Metamath Proof Explorer


Definition df-tms

Description: Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tms toMetSp = d ran ∞Met Base ndx dom dom d dist ndx d sSet TopSet ndx MetOpen d

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctms class toMetSp
1 vd setvar d
2 cxmet class ∞Met
3 2 crn class ran ∞Met
4 3 cuni class ran ∞Met
5 cbs class Base
6 cnx class ndx
7 6 5 cfv class Base ndx
8 1 cv setvar d
9 8 cdm class dom d
10 9 cdm class dom dom d
11 7 10 cop class Base ndx dom dom d
12 cds class dist
13 6 12 cfv class dist ndx
14 13 8 cop class dist ndx d
15 11 14 cpr class Base ndx dom dom d dist ndx d
16 csts class sSet
17 cts class TopSet
18 6 17 cfv class TopSet ndx
19 cmopn class MetOpen
20 8 19 cfv class MetOpen d
21 18 20 cop class TopSet ndx MetOpen d
22 15 21 16 co class Base ndx dom dom d dist ndx d sSet TopSet ndx MetOpen d
23 1 4 22 cmpt class d ran ∞Met Base ndx dom dom d dist ndx d sSet TopSet ndx MetOpen d
24 0 23 wceq wff toMetSp = d ran ∞Met Base ndx dom dom d dist ndx d sSet TopSet ndx MetOpen d