Metamath Proof Explorer


Definition df-topsp

Description: Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015)

Ref Expression
Assertion df-topsp TopSp = f | TopOpen f TopOn Base f

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctps class TopSp
1 vf setvar f
2 ctopn class TopOpen
3 1 cv setvar f
4 3 2 cfv class TopOpen f
5 ctopon class TopOn
6 cbs class Base
7 3 6 cfv class Base f
8 7 5 cfv class TopOn Base f
9 4 8 wcel wff TopOpen f TopOn Base f
10 9 1 cab class f | TopOpen f TopOn Base f
11 0 10 wceq wff TopSp = f | TopOpen f TopOn Base f