Metamath Proof Explorer


Definition df-tpos

Description: Define the transposition of a function, which is a function G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion df-tpos tpos F = F x dom F -1 x -1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 0 ctpos class tpos F
2 vx setvar x
3 0 cdm class dom F
4 3 ccnv class dom F -1
5 c0 class
6 5 csn class
7 4 6 cun class dom F -1
8 2 cv setvar x
9 8 csn class x
10 9 ccnv class x -1
11 10 cuni class x -1
12 2 7 11 cmpt class x dom F -1 x -1
13 0 12 ccom class F x dom F -1 x -1
14 1 13 wceq wff tpos F = F x dom F -1 x -1