Metamath Proof Explorer


Definition df-trnN

Description: Define set of all translations. Definition of translation in Crawley p. 111. (Contributed by NM, 4-Feb-2012)

Ref Expression
Assertion df-trnN Trn = k V d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrnN class Trn
1 vk setvar k
2 cvv class V
3 vd setvar d
4 catm class Atoms
5 1 cv setvar k
6 5 4 cfv class Atoms k
7 vf setvar f
8 cdilN class Dil
9 5 8 cfv class Dil k
10 3 cv setvar d
11 10 9 cfv class Dil k d
12 vq setvar q
13 cwpointsN class WAtoms
14 5 13 cfv class WAtoms k
15 10 14 cfv class WAtoms k d
16 vr setvar r
17 12 cv setvar q
18 cpadd class + 𝑃
19 5 18 cfv class + 𝑃 k
20 7 cv setvar f
21 17 20 cfv class f q
22 17 21 19 co class q + 𝑃 k f q
23 cpolN class 𝑃
24 5 23 cfv class 𝑃 k
25 10 csn class d
26 25 24 cfv class 𝑃 k d
27 22 26 cin class q + 𝑃 k f q 𝑃 k d
28 16 cv setvar r
29 28 20 cfv class f r
30 28 29 19 co class r + 𝑃 k f r
31 30 26 cin class r + 𝑃 k f r 𝑃 k d
32 27 31 wceq wff q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
33 32 16 15 wral wff r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
34 33 12 15 wral wff q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
35 34 7 11 crab class f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
36 3 6 35 cmpt class d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
37 1 2 36 cmpt class k V d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
38 0 37 wceq wff Trn = k V d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d