Metamath Proof Explorer


Definition df-tsms

Description: Define the set of limit points of an infinite group sum for the topological group G . If G is Hausdorff, then there will be at most one element in this set and U. ( W tsums F ) selects this unique element if it exists. ( W tsums F ) ~1o is a way to say that the sum exists and is unique. Note that unlike sum_ ( df-sum ) and gsum ( df-gsum ), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tsms tsums = w V , f V 𝒫 dom f Fin / s TopOpen w fLimf s filGen ran z s y s | z y y s w f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctsu class tsums
1 vw setvar w
2 cvv class V
3 vf setvar f
4 3 cv setvar f
5 4 cdm class dom f
6 5 cpw class 𝒫 dom f
7 cfn class Fin
8 6 7 cin class 𝒫 dom f Fin
9 vs setvar s
10 ctopn class TopOpen
11 1 cv setvar w
12 11 10 cfv class TopOpen w
13 cflf class fLimf
14 9 cv setvar s
15 cfg class filGen
16 vz setvar z
17 vy setvar y
18 16 cv setvar z
19 17 cv setvar y
20 18 19 wss wff z y
21 20 17 14 crab class y s | z y
22 16 14 21 cmpt class z s y s | z y
23 22 crn class ran z s y s | z y
24 14 23 15 co class s filGen ran z s y s | z y
25 12 24 13 co class TopOpen w fLimf s filGen ran z s y s | z y
26 cgsu class Σ𝑔
27 4 19 cres class f y
28 11 27 26 co class w f y
29 17 14 28 cmpt class y s w f y
30 29 25 cfv class TopOpen w fLimf s filGen ran z s y s | z y y s w f y
31 9 8 30 csb class 𝒫 dom f Fin / s TopOpen w fLimf s filGen ran z s y s | z y y s w f y
32 1 3 2 2 31 cmpo class w V , f V 𝒫 dom f Fin / s TopOpen w fLimf s filGen ran z s y s | z y y s w f y
33 0 32 wceq wff tsums = w V , f V 𝒫 dom f Fin / s TopOpen w fLimf s filGen ran z s y s | z y y s w f y