Metamath Proof Explorer


Definition df-uc1p

Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-uc1p Unic 1p = r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f Unit r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuc1p class Unic 1p
1 vr setvar r
2 cvv class V
3 vf setvar f
4 cbs class Base
5 cpl1 class Poly 1
6 1 cv setvar r
7 6 5 cfv class Poly 1 r
8 7 4 cfv class Base Poly 1 r
9 3 cv setvar f
10 c0g class 0 𝑔
11 7 10 cfv class 0 Poly 1 r
12 9 11 wne wff f 0 Poly 1 r
13 cco1 class coe 1
14 9 13 cfv class coe 1 f
15 cdg1 class deg 1
16 6 15 cfv class deg 1 r
17 9 16 cfv class deg 1 r f
18 17 14 cfv class coe 1 f deg 1 r f
19 cui class Unit
20 6 19 cfv class Unit r
21 18 20 wcel wff coe 1 f deg 1 r f Unit r
22 12 21 wa wff f 0 Poly 1 r coe 1 f deg 1 r f Unit r
23 22 3 8 crab class f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f Unit r
24 1 2 23 cmpt class r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f Unit r
25 0 24 wceq wff Unic 1p = r V f Base Poly 1 r | f 0 Poly 1 r coe 1 f deg 1 r f Unit r