Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv this is equivalent to being a domain) such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015) (Revised by Thierry Arnoux, 9-May-2025)

Ref Expression
Assertion df-ufd Could not format assertion : No typesetting found for |- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd Could not format UFD : No typesetting found for class UFD with typecode class
1 vr setvar r
2 ccrg class CRing
3 cabv class AbsVal
4 1 cv setvar r
5 4 3 cfv class AbsVal r
6 c0 class
7 5 6 wne wff AbsVal r
8 vi setvar i
9 cprmidl Could not format PrmIdeal : No typesetting found for class PrmIdeal with typecode class
10 4 9 cfv Could not format ( PrmIdeal ` r ) : No typesetting found for class ( PrmIdeal ` r ) with typecode class
11 c0g class 0 𝑔
12 4 11 cfv class 0 r
13 12 csn class 0 r
14 13 csn class 0 r
15 10 14 cdif Could not format ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) : No typesetting found for class ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) with typecode class
16 8 cv setvar i
17 crpm class RPrime
18 4 17 cfv class RPrime r
19 16 18 cin class i RPrime r
20 19 6 wne wff i RPrime r
21 20 8 15 wral Could not format A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) : No typesetting found for wff A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) with typecode wff
22 7 21 wa Could not format ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) : No typesetting found for wff ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) with typecode wff
23 22 1 2 crab Could not format { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } : No typesetting found for class { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } with typecode class
24 0 23 wceq Could not format UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } : No typesetting found for wff UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } with typecode wff