Metamath Proof Explorer


Definition df-uhgr

Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set v (of "vertices") and a function e (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 8-Oct-2020)

Ref Expression
Assertion df-uhgr UHGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 𝒫 v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuhgr class UHGraph
1 vg setvar g
2 cvtx class Vtx
3 1 cv setvar g
4 3 2 cfv class Vtx g
5 vv setvar v
6 ciedg class iEdg
7 3 6 cfv class iEdg g
8 ve setvar e
9 8 cv setvar e
10 9 cdm class dom e
11 5 cv setvar v
12 11 cpw class 𝒫 v
13 c0 class
14 13 csn class
15 12 14 cdif class 𝒫 v
16 10 15 9 wf wff e : dom e 𝒫 v
17 16 8 7 wsbc wff [˙ iEdg g / e]˙ e : dom e 𝒫 v
18 17 5 4 wsbc wff [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 𝒫 v
19 18 1 cab class g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 𝒫 v
20 0 19 wceq wff UHGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 𝒫 v