Metamath Proof Explorer


Definition df-ulm

Description: Define the uniform convergence of a sequence of functions. Here F ( ~>uS ) G if F is a sequence of functions F ( n ) , n e. NN defined on S and G is a function on S , and for every 0 < x there is a j such that the functions F ( k ) for j <_ k are all uniformly within x of G on the domain S . Compare with df-clim . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion df-ulm u = s V f y | n f : n s y : s x + j n k j z s f k z y z < x

Detailed syntax breakdown

Step Hyp Ref Expression
0 culm class u
1 vs setvar s
2 cvv class V
3 vf setvar f
4 vy setvar y
5 vn setvar n
6 cz class
7 3 cv setvar f
8 cuz class
9 5 cv setvar n
10 9 8 cfv class n
11 cc class
12 cmap class 𝑚
13 1 cv setvar s
14 11 13 12 co class s
15 10 14 7 wf wff f : n s
16 4 cv setvar y
17 13 11 16 wf wff y : s
18 vx setvar x
19 crp class +
20 vj setvar j
21 vk setvar k
22 20 cv setvar j
23 22 8 cfv class j
24 vz setvar z
25 cabs class abs
26 21 cv setvar k
27 26 7 cfv class f k
28 24 cv setvar z
29 28 27 cfv class f k z
30 cmin class
31 28 16 cfv class y z
32 29 31 30 co class f k z y z
33 32 25 cfv class f k z y z
34 clt class <
35 18 cv setvar x
36 33 35 34 wbr wff f k z y z < x
37 36 24 13 wral wff z s f k z y z < x
38 37 21 23 wral wff k j z s f k z y z < x
39 38 20 10 wrex wff j n k j z s f k z y z < x
40 39 18 19 wral wff x + j n k j z s f k z y z < x
41 15 17 40 w3a wff f : n s y : s x + j n k j z s f k z y z < x
42 41 5 6 wrex wff n f : n s y : s x + j n k j z s f k z y z < x
43 42 3 4 copab class f y | n f : n s y : s x + j n k j z s f k z y z < x
44 1 2 43 cmpt class s V f y | n f : n s y : s x + j n k j z s f k z y z < x
45 0 44 wceq wff u = s V f y | n f : n s y : s x + j n k j z s f k z y z < x