Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Curry and uncurry
df-unc
Metamath Proof Explorer
Description: Define the uncurrying of F , which takes a function producing
functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro , 7-Jan-2017)
Ref
Expression
Assertion
df-unc
⊢ uncurry F = x y z | y F ⁡ x z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
class F
1
0
cunc
class uncurry F
2
vx
setvar x
3
vy
setvar y
4
vz
setvar z
5
3
cv
setvar y
6
2
cv
setvar x
7
6 0
cfv
class F ⁡ x
8
4
cv
setvar z
9
5 8 7
wbr
wff y F ⁡ x z
10
9 2 3 4
coprab
class x y z | y F ⁡ x z
11
1 10
wceq
wff uncurry F = x y z | y F ⁡ x z