Metamath Proof Explorer


Definition df-unc

Description: Define the uncurrying of F , which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-unc uncurry F = x y z | y F x z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 0 cunc class uncurry F
2 vx setvar x
3 vy setvar y
4 vz setvar z
5 3 cv setvar y
6 2 cv setvar x
7 6 0 cfv class F x
8 4 cv setvar z
9 5 8 7 wbr wff y F x z
10 9 2 3 4 coprab class x y z | y F x z
11 1 10 wceq wff uncurry F = x y z | y F x z