Metamath Proof Explorer


Definition df-usgr

Description: Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph (see usgruspgr ), consisting of a set v (of "vertices") and an injective (one-to-one) function e (representing (indexed) "edges") into subsets of v of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Assertion df-usgr USGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x = 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusgr class USGraph
1 vg setvar g
2 cvtx class Vtx
3 1 cv setvar g
4 3 2 cfv class Vtx g
5 vv setvar v
6 ciedg class iEdg
7 3 6 cfv class iEdg g
8 ve setvar e
9 8 cv setvar e
10 9 cdm class dom e
11 vx setvar x
12 5 cv setvar v
13 12 cpw class 𝒫 v
14 c0 class
15 14 csn class
16 13 15 cdif class 𝒫 v
17 chash class .
18 11 cv setvar x
19 18 17 cfv class x
20 c2 class 2
21 19 20 wceq wff x = 2
22 21 11 16 crab class x 𝒫 v | x = 2
23 10 22 9 wf1 wff e : dom e 1-1 x 𝒫 v | x = 2
24 23 8 7 wsbc wff [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x = 2
25 24 5 4 wsbc wff [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x = 2
26 25 1 cab class g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x = 2
27 0 26 wceq wff USGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x = 2