Metamath Proof Explorer


Definition df-usp

Description: Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion df-usp UnifSp = f | UnifSt f UnifOn Base f TopOpen f = unifTop UnifSt f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusp class UnifSp
1 vf setvar f
2 cuss class UnifSt
3 1 cv setvar f
4 3 2 cfv class UnifSt f
5 cust class UnifOn
6 cbs class Base
7 3 6 cfv class Base f
8 7 5 cfv class UnifOn Base f
9 4 8 wcel wff UnifSt f UnifOn Base f
10 ctopn class TopOpen
11 3 10 cfv class TopOpen f
12 cutop class unifTop
13 4 12 cfv class unifTop UnifSt f
14 11 13 wceq wff TopOpen f = unifTop UnifSt f
15 9 14 wa wff UnifSt f UnifOn Base f TopOpen f = unifTop UnifSt f
16 15 1 cab class f | UnifSt f UnifOn Base f TopOpen f = unifTop UnifSt f
17 0 16 wceq wff UnifSp = f | UnifSt f UnifOn Base f TopOpen f = unifTop UnifSt f