Metamath Proof Explorer


Definition df-uspgr

Description: Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph (see uspgrupgr ) or a special undirected simple hypergraph (see uspgrushgr ), consisting of a set v (of "vertices") and an injective (one-to-one) function e (representing (indexed) "edges") into subsets of v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Assertion df-uspgr USHGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuspgr class USHGraph
1 vg setvar g
2 cvtx class Vtx
3 1 cv setvar g
4 3 2 cfv class Vtx g
5 vv setvar v
6 ciedg class iEdg
7 3 6 cfv class iEdg g
8 ve setvar e
9 8 cv setvar e
10 9 cdm class dom e
11 vx setvar x
12 5 cv setvar v
13 12 cpw class 𝒫 v
14 c0 class
15 14 csn class
16 13 15 cdif class 𝒫 v
17 chash class .
18 11 cv setvar x
19 18 17 cfv class x
20 cle class
21 c2 class 2
22 19 21 20 wbr wff x 2
23 22 11 16 crab class x 𝒫 v | x 2
24 10 23 9 wf1 wff e : dom e 1-1 x 𝒫 v | x 2
25 24 8 7 wsbc wff [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2
26 25 5 4 wsbc wff [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2
27 26 1 cab class g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2
28 0 27 wceq wff USHGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2