Metamath Proof Explorer


Definition df-ust

Description: Definition of a uniform structure. Definition 1 of BourbakiTop1 p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn . Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014) (Revised by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion df-ust UnifOn = x V u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cust class UnifOn
1 vx setvar x
2 cvv class V
3 vu setvar u
4 3 cv setvar u
5 1 cv setvar x
6 5 5 cxp class x × x
7 6 cpw class 𝒫 x × x
8 4 7 wss wff u 𝒫 x × x
9 6 4 wcel wff x × x u
10 vv setvar v
11 vw setvar w
12 10 cv setvar v
13 11 cv setvar w
14 12 13 wss wff v w
15 13 4 wcel wff w u
16 14 15 wi wff v w w u
17 16 11 7 wral wff w 𝒫 x × x v w w u
18 12 13 cin class v w
19 18 4 wcel wff v w u
20 19 11 4 wral wff w u v w u
21 cid class I
22 21 5 cres class I x
23 22 12 wss wff I x v
24 12 ccnv class v -1
25 24 4 wcel wff v -1 u
26 13 13 ccom class w w
27 26 12 wss wff w w v
28 27 11 4 wrex wff w u w w v
29 23 25 28 w3a wff I x v v -1 u w u w w v
30 17 20 29 w3a wff w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
31 30 10 4 wral wff v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
32 8 9 31 w3a wff u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
33 32 3 cab class u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
34 1 2 33 cmpt class x V u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
35 0 34 wceq wff UnifOn = x V u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v