Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Universal vertices
df-uvtx
Metamath Proof Explorer
Description: Define the class of all universal vertices (in graphs). A vertex is
calleduniversal if it is adjacent, i.e. connected by an edge, to all
other vertices (of the graph), or equivalently, if all other vertices
are its neighbors. (Contributed by Alexander van der Vekens , 12-Oct-2017) (Revised by AV , 24-Oct-2020)
Ref
Expression
Assertion
df-uvtx
⊢ UnivVtx = g ∈ V ⟼ v ∈ Vtx ⁡ g | ∀ n ∈ Vtx ⁡ g ∖ v n ∈ g NeighbVtx v
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cuvtx
class UnivVtx
1
vg
setvar g
2
cvv
class V
3
vv
setvar v
4
cvtx
class Vtx
5
1
cv
setvar g
6
5 4
cfv
class Vtx ⁡ g
7
vn
setvar n
8
3
cv
setvar v
9
8
csn
class v
10
6 9
cdif
class Vtx ⁡ g ∖ v
11
7
cv
setvar n
12
cnbgr
class NeighbVtx
13
5 8 12
co
class g NeighbVtx v
14
11 13
wcel
wff n ∈ g NeighbVtx v
15
14 7 10
wral
wff ∀ n ∈ Vtx ⁡ g ∖ v n ∈ g NeighbVtx v
16
15 3 6
crab
class v ∈ Vtx ⁡ g | ∀ n ∈ Vtx ⁡ g ∖ v n ∈ g NeighbVtx v
17
1 2 16
cmpt
class g ∈ V ⟼ v ∈ Vtx ⁡ g | ∀ n ∈ Vtx ⁡ g ∖ v n ∈ g NeighbVtx v
18
0 17
wceq
wff UnivVtx = g ∈ V ⟼ v ∈ Vtx ⁡ g | ∀ n ∈ Vtx ⁡ g ∖ v n ∈ g NeighbVtx v