Database  
				GRAPH THEORY  
				Undirected graphs  
				Neighbors, complete graphs and universal vertices  
				Universal vertices  
				df-uvtx  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Define the class of all universal vertices (in graphs).  A vertex is
       calleduniversal  if it is adjacent, i.e. connected by an edge, to all
       other vertices (of the graph), or equivalently, if all other vertices
       are its neighbors.  (Contributed by Alexander van der Vekens , 12-Oct-2017)   (Revised by AV , 24-Oct-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					df-uvtx  
					  ⊢   UnivVtx  =    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g     |   ∀  n  ∈     Vtx   ⁡  g     ∖   v          n  ∈  g  NeighbVtx  v                   
				 
			
		 
		 
			
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0  
							
								
							 
							cuvtx  
							   class  UnivVtx      
						 
						
							1  
							
								
							 
							vg  
							   setvar  g      
						 
						
							2  
							
								
							 
							cvv  
							   class  V      
						 
						
							3  
							
								
							 
							vv  
							   setvar  v      
						 
						
							4  
							
								
							 
							cvtx  
							   class   Vtx       
						 
						
							5  
							
								1 
							 
							cv  
							   setvar  g      
						 
						
							6  
							
								5  4 
							 
							cfv  
							   class    Vtx   ⁡  g         
						 
						
							7  
							
								
							 
							vn  
							   setvar  n      
						 
						
							8  
							
								3 
							 
							cv  
							   setvar  v      
						 
						
							9  
							
								8 
							 
							csn  
							   class   v        
						 
						
							10  
							
								6  9 
							 
							cdif  
							   class     Vtx   ⁡  g     ∖   v          
						 
						
							11  
							
								7 
							 
							cv  
							   setvar  n      
						 
						
							12  
							
								
							 
							cnbgr  
							   class  NeighbVtx      
						 
						
							13  
							
								5  8  12 
							 
							co  
							   class  g  NeighbVtx  v      
						 
						
							14  
							
								11  13 
							 
							wcel  
							   wff   n  ∈  g  NeighbVtx  v         
						 
						
							15  
							
								14  7  10 
							 
							wral  
							   wff   ∀  n  ∈     Vtx   ⁡  g     ∖   v          n  ∈  g  NeighbVtx  v           
						 
						
							16  
							
								15  3  6 
							 
							crab  
							   class   v  ∈    Vtx   ⁡  g     |   ∀  n  ∈     Vtx   ⁡  g     ∖   v          n  ∈  g  NeighbVtx  v             
						 
						
							17  
							
								1  2  16 
							 
							cmpt  
							   class    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g     |   ∀  n  ∈     Vtx   ⁡  g     ∖   v          n  ∈  g  NeighbVtx  v                
						 
						
							18  
							
								0  17 
							 
							wceq  
							   wff   UnivVtx  =    g  ∈  V  ⟼   v  ∈    Vtx   ⁡  g     |   ∀  n  ∈     Vtx   ⁡  g     ∖   v          n  ∈  g  NeighbVtx  v