Metamath Proof Explorer


Definition df-vc

Description: Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-vc CVecOLD=gs|gAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvc classCVecOLD
1 vg setvarg
2 vs setvars
3 1 cv setvarg
4 cablo classAbelOp
5 3 4 wcel wffgAbelOp
6 2 cv setvars
7 cc class
8 3 crn classrang
9 7 8 cxp class×rang
10 9 8 6 wf wffs:×rangrang
11 vx setvarx
12 c1 class1
13 11 cv setvarx
14 12 13 6 co class1sx
15 14 13 wceq wff1sx=x
16 vy setvary
17 vz setvarz
18 16 cv setvary
19 17 cv setvarz
20 13 19 3 co classxgz
21 18 20 6 co classysxgz
22 18 13 6 co classysx
23 18 19 6 co classysz
24 22 23 3 co classysxgysz
25 21 24 wceq wffysxgz=ysxgysz
26 25 17 8 wral wffzrangysxgz=ysxgysz
27 caddc class+
28 18 19 27 co classy+z
29 28 13 6 co classy+zsx
30 19 13 6 co classzsx
31 22 30 3 co classysxgzsx
32 29 31 wceq wffy+zsx=ysxgzsx
33 cmul class×
34 18 19 33 co classyz
35 34 13 6 co classyzsx
36 18 30 6 co classyszsx
37 35 36 wceq wffyzsx=yszsx
38 32 37 wa wffy+zsx=ysxgzsxyzsx=yszsx
39 38 17 7 wral wffzy+zsx=ysxgzsxyzsx=yszsx
40 26 39 wa wffzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
41 40 16 7 wral wffyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
42 15 41 wa wff1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
43 42 11 8 wral wffxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
44 5 10 43 w3a wffgAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
45 44 1 2 copab classgs|gAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
46 0 45 wceq wffCVecOLD=gs|gAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx