Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
df-vma
Metamath Proof Explorer
Description: Define the von Mangoldt function, which gives the logarithm of the prime
at a prime power, and is zero elsewhere, see definition in ApostolNT
p. 32. (Contributed by Mario Carneiro , 7-Apr-2016)
Ref
Expression
Assertion
df-vma
⊢ Λ = x ∈ ℕ ⟼ ⦋ p ∈ ℙ | p ∥ x / s ⦌ if s = 1 log ⁡ ⋃ s 0
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cvma
class Λ
1
vx
setvar x
2
cn
class ℕ
3
vp
setvar p
4
cprime
class ℙ
5
3
cv
setvar p
6
cdvds
class ∥
7
1
cv
setvar x
8
5 7 6
wbr
wff p ∥ x
9
8 3 4
crab
class p ∈ ℙ | p ∥ x
10
vs
setvar s
11
chash
class .
12
10
cv
setvar s
13
12 11
cfv
class s
14
c1
class 1
15
13 14
wceq
wff s = 1
16
clog
class log
17
12
cuni
class ⋃ s
18
17 16
cfv
class log ⁡ ⋃ s
19
cc0
class 0
20
15 18 19
cif
class if s = 1 log ⁡ ⋃ s 0
21
10 9 20
csb
class ⦋ p ∈ ℙ | p ∥ x / s ⦌ if s = 1 log ⁡ ⋃ s 0
22
1 2 21
cmpt
class x ∈ ℕ ⟼ ⦋ p ∈ ℙ | p ∥ x / s ⦌ if s = 1 log ⁡ ⋃ s 0
23
0 22
wceq
wff Λ = x ∈ ℕ ⟼ ⦋ p ∈ ℙ | p ∥ x / s ⦌ if s = 1 log ⁡ ⋃ s 0