Metamath Proof Explorer


Definition df-vol

Description: Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as A e. dom vol . (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion df-vol vol = vol * x | y vol * -1 vol * y = vol * y x + vol * y x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvol class vol
1 covol class vol *
2 vx setvar x
3 vy setvar y
4 1 ccnv class vol * -1
5 cr class
6 4 5 cima class vol * -1
7 3 cv setvar y
8 7 1 cfv class vol * y
9 2 cv setvar x
10 7 9 cin class y x
11 10 1 cfv class vol * y x
12 caddc class +
13 7 9 cdif class y x
14 13 1 cfv class vol * y x
15 11 14 12 co class vol * y x + vol * y x
16 8 15 wceq wff vol * y = vol * y x + vol * y x
17 16 3 6 wral wff y vol * -1 vol * y = vol * y x + vol * y x
18 17 2 cab class x | y vol * -1 vol * y = vol * y x + vol * y x
19 1 18 cres class vol * x | y vol * -1 vol * y = vol * y x + vol * y x
20 0 19 wceq wff vol = vol * x | y vol * -1 vol * y = vol * y x + vol * y x