Metamath Proof Explorer


Definition df-vs

Description: Define vector subtraction on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-vs - v = / g + v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnsb class - v
1 cgs class / g
2 cpv class + v
3 1 2 ccom class / g + v
4 0 3 wceq wff - v = / g + v