Metamath Proof Explorer


Definition df-vts

Description: Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Assertion df-vts vts = l , n 0 x a = 1 n l a e i 2 π a x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvts class vts
1 vl setvar l
2 cc class
3 cmap class 𝑚
4 cn class
5 2 4 3 co class
6 vn setvar n
7 cn0 class 0
8 vx setvar x
9 va setvar a
10 c1 class 1
11 cfz class
12 6 cv setvar n
13 10 12 11 co class 1 n
14 1 cv setvar l
15 9 cv setvar a
16 15 14 cfv class l a
17 cmul class ×
18 ce class exp
19 ci class i
20 c2 class 2
21 cpi class π
22 20 21 17 co class 2 π
23 19 22 17 co class i 2 π
24 8 cv setvar x
25 15 24 17 co class a x
26 23 25 17 co class i 2 π a x
27 26 18 cfv class e i 2 π a x
28 16 27 17 co class l a e i 2 π a x
29 13 28 9 csu class a = 1 n l a e i 2 π a x
30 8 2 29 cmpt class x a = 1 n l a e i 2 π a x
31 1 6 5 7 30 cmpo class l , n 0 x a = 1 n l a e i 2 π a x
32 0 31 wceq wff vts = l , n 0 x a = 1 n l a e i 2 π a x