Metamath Proof Explorer


Definition df-wina

Description: An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows _om as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-wina Inacc 𝑤 = x | x cf x = x y x z x y z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwina class Inacc 𝑤
1 vx setvar x
2 1 cv setvar x
3 c0 class
4 2 3 wne wff x
5 ccf class cf
6 2 5 cfv class cf x
7 6 2 wceq wff cf x = x
8 vy setvar y
9 vz setvar z
10 8 cv setvar y
11 csdm class
12 9 cv setvar z
13 10 12 11 wbr wff y z
14 13 9 2 wrex wff z x y z
15 14 8 2 wral wff y x z x y z
16 4 7 15 w3a wff x cf x = x y x z x y z
17 16 1 cab class x | x cf x = x y x z x y z
18 0 17 wceq wff Inacc 𝑤 = x | x cf x = x y x z x y z