Database
GRAPH THEORY
Walks, paths and cycles
Walks
df-wlks
Metamath Proof Explorer
Description: Define the set of all walks (in a hypergraph). Such walks correspond to
the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on
the edge level" (see wlk1walk ) discussed in Aksoy et al. The
predicate F ( Walks G ) P can be read as "The pair
<. F , P >. represents a walk in a graph G ", see also iswlk .
The condition { ( p k ) , ( p ( k + 1 ) ) }
C_ ( ( iEdg g ) ( f k ) ) (hereinafter referred to as C)
would not be sufficient, because the repetition of a vertex in a walk
(i.e. ( p k ) = ( p ( k + 1 ) ) should be allowed only if
there is a loop at ( p k ) . Otherwise, C would be fulfilled by
each edge containing ( p k ) .
According to the definition of Bollobas p. 4.: "A walk W in a graph
is an alternating sequence of vertices and edges x0 , e1 , x1 ,
e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f
from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the
(indices of the) edges, and p enumerates the vertices. So the walk is
represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ...
p(n-1) e(f(n)) p(n). (Contributed by AV , 30-Dec-2020)
Ref
Expression
Assertion
df-wlks
⊢ Walks = g ∈ V ⟼ f p | f ∈ Word dom ⁡ iEdg ⁡ g ∧ p : 0 … f ⟶ Vtx ⁡ g ∧ ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cwlks
class Walks
1
vg
setvar g
2
cvv
class V
3
vf
setvar f
4
vp
setvar p
5
3
cv
setvar f
6
ciedg
class iEdg
7
1
cv
setvar g
8
7 6
cfv
class iEdg ⁡ g
9
8
cdm
class dom ⁡ iEdg ⁡ g
10
9
cword
class Word dom ⁡ iEdg ⁡ g
11
5 10
wcel
wff f ∈ Word dom ⁡ iEdg ⁡ g
12
4
cv
setvar p
13
cc0
class 0
14
cfz
class …
15
chash
class .
16
5 15
cfv
class f
17
13 16 14
co
class 0 … f
18
cvtx
class Vtx
19
7 18
cfv
class Vtx ⁡ g
20
17 19 12
wf
wff p : 0 … f ⟶ Vtx ⁡ g
21
vk
setvar k
22
cfzo
class ..^
23
13 16 22
co
class 0 ..^ f
24
21
cv
setvar k
25
24 12
cfv
class p ⁡ k
26
caddc
class +
27
c1
class 1
28
24 27 26
co
class k + 1
29
28 12
cfv
class p ⁡ k + 1
30
25 29
wceq
wff p ⁡ k = p ⁡ k + 1
31
24 5
cfv
class f ⁡ k
32
31 8
cfv
class iEdg ⁡ g ⁡ f ⁡ k
33
25
csn
class p ⁡ k
34
32 33
wceq
wff iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k
35
25 29
cpr
class p ⁡ k p ⁡ k + 1
36
35 32
wss
wff p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
37
30 34 36
wif
wff if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
38
37 21 23
wral
wff ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
39
11 20 38
w3a
wff f ∈ Word dom ⁡ iEdg ⁡ g ∧ p : 0 … f ⟶ Vtx ⁡ g ∧ ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
40
39 3 4
copab
class f p | f ∈ Word dom ⁡ iEdg ⁡ g ∧ p : 0 … f ⟶ Vtx ⁡ g ∧ ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
41
1 2 40
cmpt
class g ∈ V ⟼ f p | f ∈ Word dom ⁡ iEdg ⁡ g ∧ p : 0 … f ⟶ Vtx ⁡ g ∧ ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k
42
0 41
wceq
wff Walks = g ∈ V ⟼ f p | f ∈ Word dom ⁡ iEdg ⁡ g ∧ p : 0 … f ⟶ Vtx ⁡ g ∧ ∀ k ∈ 0 ..^ f if- p ⁡ k = p ⁡ k + 1 iEdg ⁡ g ⁡ f ⁡ k = p ⁡ k p ⁡ k p ⁡ k + 1 ⊆ iEdg ⁡ g ⁡ f ⁡ k