Metamath Proof Explorer


Definition df-wrecs

Description: Here we define the well-ordered recursive function generator. This function takes the usual expressions from recursion theorems and forms a unified definition. Specifically, given a function F , a relationship R , and a base set A , this definition generates a function G = wrecs ( R , A , F ) that has property that, at any point x e. A , ( Gx ) = ( F` ( G |`Pred ( R , A , x ) ) ) . See wfr1 , wfr2 , and wfr3 . (Contributed by Scott Fenton, 7-Jun-2018) (New usage is discouraged.)

Ref Expression
Assertion df-wrecs wrecs R A F = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 cF class F
3 1 0 2 cwrecs class wrecs R A F
4 vf setvar f
5 vx setvar x
6 4 cv setvar f
7 5 cv setvar x
8 6 7 wfn wff f Fn x
9 7 1 wss wff x A
10 vy setvar y
11 10 cv setvar y
12 1 0 11 cpred class Pred R A y
13 12 7 wss wff Pred R A y x
14 13 10 7 wral wff y x Pred R A y x
15 9 14 wa wff x A y x Pred R A y x
16 11 6 cfv class f y
17 6 12 cres class f Pred R A y
18 17 2 cfv class F f Pred R A y
19 16 18 wceq wff f y = F f Pred R A y
20 19 10 7 wral wff y x f y = F f Pred R A y
21 8 15 20 w3a wff f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
22 21 5 wex wff x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
23 22 4 cab class f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
24 23 cuni class f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
25 3 24 wceq wff wrecs R A F = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y