Metamath Proof Explorer


Definition df-wun

Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun ) whereas the analogue for Grothendieck universes requires ax-groth (see grothtsk ). (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-wun WUni = u | Tr u u x u x u 𝒫 x u y u x y u

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwun class WUni
1 vu setvar u
2 1 cv setvar u
3 2 wtr wff Tr u
4 c0 class
5 2 4 wne wff u
6 vx setvar x
7 6 cv setvar x
8 7 cuni class x
9 8 2 wcel wff x u
10 7 cpw class 𝒫 x
11 10 2 wcel wff 𝒫 x u
12 vy setvar y
13 12 cv setvar y
14 7 13 cpr class x y
15 14 2 wcel wff x y u
16 15 12 2 wral wff y u x y u
17 9 11 16 w3a wff x u 𝒫 x u y u x y u
18 17 6 2 wral wff x u x u 𝒫 x u y u x y u
19 3 5 18 w3a wff Tr u u x u x u 𝒫 x u y u x y u
20 19 1 cab class u | Tr u u x u x u 𝒫 x u y u x y u
21 0 20 wceq wff WUni = u | Tr u u x u x u 𝒫 x u y u x y u