Metamath Proof Explorer


Definition df-wun

Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun ) whereas the analogue for Grothendieck universes requires ax-groth (see grothtsk ). (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-wun WUni=u|Truuxuxu𝒫xuyuxyu

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwun classWUni
1 vu setvaru
2 1 cv setvaru
3 2 wtr wffTru
4 c0 class
5 2 4 wne wffu
6 vx setvarx
7 6 cv setvarx
8 7 cuni classx
9 8 2 wcel wffxu
10 7 cpw class𝒫x
11 10 2 wcel wff𝒫xu
12 vy setvary
13 12 cv setvary
14 7 13 cpr classxy
15 14 2 wcel wffxyu
16 15 12 2 wral wffyuxyu
17 9 11 16 w3a wffxu𝒫xuyuxyu
18 17 6 2 wral wffxuxu𝒫xuyuxyu
19 3 5 18 w3a wffTruuxuxu𝒫xuyuxyu
20 19 1 cab classu|Truuxuxu𝒫xuyuxyu
21 0 20 wceq wffWUni=u|Truuxuxu𝒫xuyuxyu