Metamath Proof Explorer


Definition df-wwlksnon

Description: Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion df-wwlksnon WWalksNOn = n 0 , g V a Vtx g , b Vtx g w n WWalksN g | w 0 = a w n = b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwlksnon class WWalksNOn
1 vn setvar n
2 cn0 class 0
3 vg setvar g
4 cvv class V
5 va setvar a
6 cvtx class Vtx
7 3 cv setvar g
8 7 6 cfv class Vtx g
9 vb setvar b
10 vw setvar w
11 1 cv setvar n
12 cwwlksn class WWalksN
13 11 7 12 co class n WWalksN g
14 10 cv setvar w
15 cc0 class 0
16 15 14 cfv class w 0
17 5 cv setvar a
18 16 17 wceq wff w 0 = a
19 11 14 cfv class w n
20 9 cv setvar b
21 19 20 wceq wff w n = b
22 18 21 wa wff w 0 = a w n = b
23 22 10 13 crab class w n WWalksN g | w 0 = a w n = b
24 5 9 8 8 23 cmpo class a Vtx g , b Vtx g w n WWalksN g | w 0 = a w n = b
25 1 3 2 4 24 cmpo class n 0 , g V a Vtx g , b Vtx g w n WWalksN g | w 0 = a w n = b
26 0 25 wceq wff WWalksNOn = n 0 , g V a Vtx g , b Vtx g w n WWalksN g | w 0 = a w n = b