Metamath Proof Explorer


Definition df-xmul

Description: Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion df-xmul 𝑒 = x * , y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxmu class 𝑒
1 vx setvar x
2 cxr class *
3 vy setvar y
4 1 cv setvar x
5 cc0 class 0
6 4 5 wceq wff x = 0
7 3 cv setvar y
8 7 5 wceq wff y = 0
9 6 8 wo wff x = 0 y = 0
10 clt class <
11 5 7 10 wbr wff 0 < y
12 cpnf class +∞
13 4 12 wceq wff x = +∞
14 11 13 wa wff 0 < y x = +∞
15 7 5 10 wbr wff y < 0
16 cmnf class −∞
17 4 16 wceq wff x = −∞
18 15 17 wa wff y < 0 x = −∞
19 14 18 wo wff 0 < y x = +∞ y < 0 x = −∞
20 5 4 10 wbr wff 0 < x
21 7 12 wceq wff y = +∞
22 20 21 wa wff 0 < x y = +∞
23 4 5 10 wbr wff x < 0
24 7 16 wceq wff y = −∞
25 23 24 wa wff x < 0 y = −∞
26 22 25 wo wff 0 < x y = +∞ x < 0 y = −∞
27 19 26 wo wff 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞
28 11 17 wa wff 0 < y x = −∞
29 15 13 wa wff y < 0 x = +∞
30 28 29 wo wff 0 < y x = −∞ y < 0 x = +∞
31 20 24 wa wff 0 < x y = −∞
32 23 21 wa wff x < 0 y = +∞
33 31 32 wo wff 0 < x y = −∞ x < 0 y = +∞
34 30 33 wo wff 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞
35 cmul class ×
36 4 7 35 co class x y
37 34 16 36 cif class if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y
38 27 12 37 cif class if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y
39 9 5 38 cif class if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y
40 1 3 2 2 39 cmpo class x * , y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y
41 0 40 wceq wff 𝑒 = x * , y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y