Metamath Proof Explorer
		
		
		
		Description:  Define the negative of an extended real number.  (Contributed by FL, 26-Dec-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-xneg |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cA |  | 
						
							| 1 | 0 | cxne |  | 
						
							| 2 |  | cpnf |  | 
						
							| 3 | 0 2 | wceq |  | 
						
							| 4 |  | cmnf |  | 
						
							| 5 | 0 4 | wceq |  | 
						
							| 6 | 0 | cneg |  | 
						
							| 7 | 5 2 6 | cif |  | 
						
							| 8 | 3 4 7 | cif |  | 
						
							| 9 | 1 8 | wceq |  |