Metamath Proof Explorer


Definition df-xor

Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true T. ( df-tru ) and the constant false F. ( df-fal ), we will be able to prove these truth table values: ( ( T. \/_ T. ) <-> F. ) ( truxortru ), ( ( T. \/_ F. ) <-> T. ) ( truxorfal ), ( ( F. \/_ T. ) <-> T. ) ( falxortru ), and ( ( F. \/_ F. ) <-> F. ) ( falxorfal ). Contrast with /\ ( df-an ), \/ ( df-or ), -> ( wi ), and -/\ ( df-nan ). (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion df-xor φ ψ ¬ φ ψ

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph wff φ
1 wps wff ψ
2 0 1 wxo wff φ ψ
3 0 1 wb wff φ ψ
4 3 wn wff ¬ φ ψ
5 2 4 wb wff φ ψ ¬ φ ψ