Metamath Proof Explorer


Definition df-zlm

Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zlm ℤMod = g V g sSet Scalar ndx ring sSet ndx g

Detailed syntax breakdown

Step Hyp Ref Expression
0 czlm class ℤMod
1 vg setvar g
2 cvv class V
3 1 cv setvar g
4 csts class sSet
5 csca class Scalar
6 cnx class ndx
7 6 5 cfv class Scalar ndx
8 zring class ring
9 7 8 cop class Scalar ndx ring
10 3 9 4 co class g sSet Scalar ndx ring
11 cvsca class 𝑠
12 6 11 cfv class ndx
13 cmg class 𝑔
14 3 13 cfv class g
15 12 14 cop class ndx g
16 10 15 4 co class g sSet Scalar ndx ring sSet ndx g
17 1 2 16 cmpt class g V g sSet Scalar ndx ring sSet ndx g
18 0 17 wceq wff ℤMod = g V g sSet Scalar ndx ring sSet ndx g