Metamath Proof Explorer


Definition df-zrh

Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of n = 1r + 1r + ... + 1r for integers (see also df-mulg ). (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zrh ℤRHom = r V ring RingHom r

Detailed syntax breakdown

Step Hyp Ref Expression
0 czrh class ℤRHom
1 vr setvar r
2 cvv class V
3 zring class ring
4 crh class RingHom
5 1 cv setvar r
6 3 5 4 co class ring RingHom r
7 6 cuni class ring RingHom r
8 1 2 7 cmpt class r V ring RingHom r
9 0 8 wceq wff ℤRHom = r V ring RingHom r