Metamath Proof Explorer


Theorem df0op2

Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion df0op2 0 hop = × 0

Proof

Step Hyp Ref Expression
1 ho0f 0 hop :
2 ffn 0 hop : 0 hop Fn
3 1 2 ax-mp 0 hop Fn
4 ho0val x 0 hop x = 0
5 4 rgen x 0 hop x = 0
6 fconstfv 0 hop : 0 0 hop Fn x 0 hop x = 0
7 3 5 6 mpbir2an 0 hop : 0
8 ax-hv0cl 0
9 8 elexi 0 V
10 9 fconst2 0 hop : 0 0 hop = × 0
11 7 10 mpbi 0 hop = × 0
12 df-ch0 0 = 0
13 12 xpeq2i × 0 = × 0
14 11 13 eqtr4i 0 hop = × 0