Metamath Proof Explorer


Theorem df1o2

Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion df1o2 1 𝑜 =

Proof

Step Hyp Ref Expression
1 df-1o 1 𝑜 = suc
2 suc0 suc =
3 1 2 eqtri 1 𝑜 =