Metamath Proof Explorer


Theorem df2idl2

Description: Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses df2idl2rng.u U = 2Ideal R
df2idl2rng.b B = Base R
df2idl2rng.t · ˙ = R
Assertion df2idl2 R Ring I U I SubGrp R x B y I x · ˙ y I y · ˙ x I

Proof

Step Hyp Ref Expression
1 df2idl2rng.u U = 2Ideal R
2 df2idl2rng.b B = Base R
3 df2idl2rng.t · ˙ = R
4 1 eleq2i I U I 2Ideal R
5 4 biimpi I U I 2Ideal R
6 5 2idllidld I U I LIdeal R
7 eqid LIdeal R = LIdeal R
8 7 lidlsubg R Ring I LIdeal R I SubGrp R
9 6 8 sylan2 R Ring I U I SubGrp R
10 ringrng R Ring R Rng
11 1 2 3 df2idl2rng R Rng I SubGrp R I U x B y I x · ˙ y I y · ˙ x I
12 10 11 sylan R Ring I SubGrp R I U x B y I x · ˙ y I y · ˙ x I
13 9 12 biadanid R Ring I U I SubGrp R x B y I x · ˙ y I y · ˙ x I