Metamath Proof Explorer


Theorem df2idl2rng

Description: Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses df2idl2rng.u U = 2Ideal R
df2idl2rng.b B = Base R
df2idl2rng.t · ˙ = R
Assertion df2idl2rng R Rng I SubGrp R I U x B y I x · ˙ y I y · ˙ x I

Proof

Step Hyp Ref Expression
1 df2idl2rng.u U = 2Ideal R
2 df2idl2rng.b B = Base R
3 df2idl2rng.t · ˙ = R
4 eqid LIdeal R = LIdeal R
5 4 2 3 dflidl2rng R Rng I SubGrp R I LIdeal R x B y I x · ˙ y I
6 eqid LIdeal opp r R = LIdeal opp r R
7 6 2 3 isridlrng R Rng I SubGrp R I LIdeal opp r R x B y I y · ˙ x I
8 5 7 anbi12d R Rng I SubGrp R I LIdeal R I LIdeal opp r R x B y I x · ˙ y I x B y I y · ˙ x I
9 eqid opp r R = opp r R
10 4 9 6 1 2idlelb I U I LIdeal R I LIdeal opp r R
11 r19.26-2 x B y I x · ˙ y I y · ˙ x I x B y I x · ˙ y I x B y I y · ˙ x I
12 8 10 11 3bitr4g R Rng I SubGrp R I U x B y I x · ˙ y I y · ˙ x I