Metamath Proof Explorer


Theorem df3nandALT2

Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion df3nandALT2 φ ψ χ ¬ φ ψ χ

Proof

Step Hyp Ref Expression
1 df-3nand φ ψ χ φ ψ ¬ χ
2 imnan ψ ¬ χ ¬ ψ χ
3 2 imbi2i φ ψ ¬ χ φ ¬ ψ χ
4 imnan φ ¬ ψ χ ¬ φ ψ χ
5 3anass φ ψ χ φ ψ χ
6 4 5 xchbinxr φ ¬ ψ χ ¬ φ ψ χ
7 1 3 6 3bitri φ ψ χ ¬ φ ψ χ