Metamath Proof Explorer


Theorem dfac0

Description: Equivalence of two versions of the Axiom of Choice. The proof uses the Axiom of Regularity. The right-hand side is our original ax-ac . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dfac0 CHOICE x y z w z w w x v u t u w w t u t t y u = v

Proof

Step Hyp Ref Expression
1 dfac7 CHOICE x y z x w z ∃! v z u y z u v u
2 aceq0 y z x w z ∃! v z u y z u v u y z w z w w x v u t u w w t u t t y u = v
3 2 albii x y z x w z ∃! v z u y z u v u x y z w z w w x v u t u w w t u t t y u = v
4 1 3 bitri CHOICE x y z w z w w x v u t u w w t u t t y u = v