Metamath Proof Explorer


Theorem dfac12k

Description: Equivalence of dfac12 and dfac12a , without using Regularity. (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Assertion dfac12k x On 𝒫 x dom card y On 𝒫 y dom card

Proof

Step Hyp Ref Expression
1 alephon y On
2 pweq x = y 𝒫 x = 𝒫 y
3 2 eleq1d x = y 𝒫 x dom card 𝒫 y dom card
4 3 rspcv y On x On 𝒫 x dom card 𝒫 y dom card
5 1 4 ax-mp x On 𝒫 x dom card 𝒫 y dom card
6 5 ralrimivw x On 𝒫 x dom card y On 𝒫 y dom card
7 omelon ω On
8 cardon card x On
9 ontri1 ω On card x On ω card x ¬ card x ω
10 7 8 9 mp2an ω card x ¬ card x ω
11 cardidm card card x = card x
12 cardalephex ω card x card card x = card x y On card x = y
13 11 12 mpbii ω card x y On card x = y
14 r19.29 y On 𝒫 y dom card y On card x = y y On 𝒫 y dom card card x = y
15 pweq card x = y 𝒫 card x = 𝒫 y
16 15 eleq1d card x = y 𝒫 card x dom card 𝒫 y dom card
17 16 biimparc 𝒫 y dom card card x = y 𝒫 card x dom card
18 17 rexlimivw y On 𝒫 y dom card card x = y 𝒫 card x dom card
19 14 18 syl y On 𝒫 y dom card y On card x = y 𝒫 card x dom card
20 19 ex y On 𝒫 y dom card y On card x = y 𝒫 card x dom card
21 13 20 syl5 y On 𝒫 y dom card ω card x 𝒫 card x dom card
22 10 21 syl5bir y On 𝒫 y dom card ¬ card x ω 𝒫 card x dom card
23 nnfi card x ω card x Fin
24 pwfi card x Fin 𝒫 card x Fin
25 23 24 sylib card x ω 𝒫 card x Fin
26 finnum 𝒫 card x Fin 𝒫 card x dom card
27 25 26 syl card x ω 𝒫 card x dom card
28 22 27 pm2.61d2 y On 𝒫 y dom card 𝒫 card x dom card
29 oncardid x On card x x
30 pwen card x x 𝒫 card x 𝒫 x
31 ennum 𝒫 card x 𝒫 x 𝒫 card x dom card 𝒫 x dom card
32 29 30 31 3syl x On 𝒫 card x dom card 𝒫 x dom card
33 28 32 syl5ibcom y On 𝒫 y dom card x On 𝒫 x dom card
34 33 ralrimiv y On 𝒫 y dom card x On 𝒫 x dom card
35 6 34 impbii x On 𝒫 x dom card y On 𝒫 y dom card