Step |
Hyp |
Ref |
Expression |
1 |
|
dfac12.1 |
|
2 |
|
dfac12.3 |
|
3 |
|
dfac12.4 |
|
4 |
|
dfac12.5 |
|
5 |
|
dfac12.h |
|
6 |
3
|
tfr2 |
|
7 |
4 6
|
syl |
|
8 |
3
|
tfr1 |
|
9 |
|
fnfun |
|
10 |
8 9
|
ax-mp |
|
11 |
|
resfunexg |
|
12 |
10 4 11
|
sylancr |
|
13 |
|
dmeq |
|
14 |
13
|
fveq2d |
|
15 |
13
|
unieqd |
|
16 |
13 15
|
eqeq12d |
|
17 |
|
rneq |
|
18 |
|
df-ima |
|
19 |
17 18
|
eqtr4di |
|
20 |
19
|
unieqd |
|
21 |
20
|
rneqd |
|
22 |
21
|
unieqd |
|
23 |
|
suceq |
|
24 |
22 23
|
syl |
|
25 |
24
|
oveq1d |
|
26 |
|
fveq1 |
|
27 |
26
|
fveq1d |
|
28 |
25 27
|
oveq12d |
|
29 |
|
id |
|
30 |
29 15
|
fveq12d |
|
31 |
30
|
rneqd |
|
32 |
|
oieq2 |
|
33 |
31 32
|
syl |
|
34 |
33
|
cnveqd |
|
35 |
34 30
|
coeq12d |
|
36 |
35
|
imaeq1d |
|
37 |
36
|
fveq2d |
|
38 |
16 28 37
|
ifbieq12d |
|
39 |
14 38
|
mpteq12dv |
|
40 |
|
eqid |
|
41 |
|
fvex |
|
42 |
41
|
mptex |
|
43 |
39 40 42
|
fvmpt |
|
44 |
12 43
|
syl |
|
45 |
|
onss |
|
46 |
4 45
|
syl |
|
47 |
|
fnssres |
|
48 |
8 46 47
|
sylancr |
|
49 |
48
|
fndmd |
|
50 |
49
|
fveq2d |
|
51 |
50
|
mpteq1d |
|
52 |
49
|
adantr |
|
53 |
52
|
unieqd |
|
54 |
52 53
|
eqeq12d |
|
55 |
54
|
ifbid |
|
56 |
|
rankr1ai |
|
57 |
56
|
ad2antlr |
|
58 |
|
simpr |
|
59 |
57 58
|
eleqtrd |
|
60 |
|
eloni |
|
61 |
|
ordsucuniel |
|
62 |
4 60 61
|
3syl |
|
63 |
62
|
ad2antrr |
|
64 |
59 63
|
mpbid |
|
65 |
64
|
fvresd |
|
66 |
65
|
fveq1d |
|
67 |
66
|
oveq2d |
|
68 |
67
|
ifeq1da |
|
69 |
53
|
adantr |
|
70 |
69
|
fveq2d |
|
71 |
4
|
ad2antrr |
|
72 |
|
uniexg |
|
73 |
|
sucidg |
|
74 |
71 72 73
|
3syl |
|
75 |
4
|
adantr |
|
76 |
|
orduniorsuc |
|
77 |
75 60 76
|
3syl |
|
78 |
77
|
orcanai |
|
79 |
74 78
|
eleqtrrd |
|
80 |
79
|
fvresd |
|
81 |
70 80
|
eqtrd |
|
82 |
81
|
rneqd |
|
83 |
|
oieq2 |
|
84 |
82 83
|
syl |
|
85 |
84
|
cnveqd |
|
86 |
85 81
|
coeq12d |
|
87 |
86 5
|
eqtr4di |
|
88 |
87
|
imaeq1d |
|
89 |
88
|
fveq2d |
|
90 |
89
|
ifeq2da |
|
91 |
55 68 90
|
3eqtrd |
|
92 |
91
|
mpteq2dva |
|
93 |
51 92
|
eqtrd |
|
94 |
7 44 93
|
3eqtrd |
|