Metamath Proof Explorer


Theorem dfac12lem1

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 φ A On
dfac12.3 φ F : 𝒫 har R1 A 1-1 On
dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
dfac12.5 φ C On
dfac12.h H = OrdIso E ran G C -1 G C
Assertion dfac12lem1 φ G C = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y

Proof

Step Hyp Ref Expression
1 dfac12.1 φ A On
2 dfac12.3 φ F : 𝒫 har R1 A 1-1 On
3 dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
4 dfac12.5 φ C On
5 dfac12.h H = OrdIso E ran G C -1 G C
6 3 tfr2 C On G C = x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y G C
7 4 6 syl φ G C = x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y G C
8 3 tfr1 G Fn On
9 fnfun G Fn On Fun G
10 8 9 ax-mp Fun G
11 resfunexg Fun G C On G C V
12 10 4 11 sylancr φ G C V
13 dmeq x = G C dom x = dom G C
14 13 fveq2d x = G C R1 dom x = R1 dom G C
15 13 unieqd x = G C dom x = dom G C
16 13 15 eqeq12d x = G C dom x = dom x dom G C = dom G C
17 rneq x = G C ran x = ran G C
18 df-ima G C = ran G C
19 17 18 eqtr4di x = G C ran x = G C
20 19 unieqd x = G C ran x = G C
21 20 rneqd x = G C ran ran x = ran G C
22 21 unieqd x = G C ran ran x = ran G C
23 suceq ran ran x = ran G C suc ran ran x = suc ran G C
24 22 23 syl x = G C suc ran ran x = suc ran G C
25 24 oveq1d x = G C suc ran ran x 𝑜 rank y = suc ran G C 𝑜 rank y
26 fveq1 x = G C x suc rank y = G C suc rank y
27 26 fveq1d x = G C x suc rank y y = G C suc rank y y
28 25 27 oveq12d x = G C suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y = suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y
29 id x = G C x = G C
30 29 15 fveq12d x = G C x dom x = G C dom G C
31 30 rneqd x = G C ran x dom x = ran G C dom G C
32 oieq2 ran x dom x = ran G C dom G C OrdIso E ran x dom x = OrdIso E ran G C dom G C
33 31 32 syl x = G C OrdIso E ran x dom x = OrdIso E ran G C dom G C
34 33 cnveqd x = G C OrdIso E ran x dom x -1 = OrdIso E ran G C dom G C -1
35 34 30 coeq12d x = G C OrdIso E ran x dom x -1 x dom x = OrdIso E ran G C dom G C -1 G C dom G C
36 35 imaeq1d x = G C OrdIso E ran x dom x -1 x dom x y = OrdIso E ran G C dom G C -1 G C dom G C y
37 36 fveq2d x = G C F OrdIso E ran x dom x -1 x dom x y = F OrdIso E ran G C dom G C -1 G C dom G C y
38 16 28 37 ifbieq12d x = G C if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y = if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
39 14 38 mpteq12dv x = G C y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y = y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
40 eqid x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y = x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
41 fvex R1 dom G C V
42 41 mptex y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y V
43 39 40 42 fvmpt G C V x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y G C = y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
44 12 43 syl φ x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y G C = y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
45 onss C On C On
46 4 45 syl φ C On
47 fnssres G Fn On C On G C Fn C
48 8 46 47 sylancr φ G C Fn C
49 48 fndmd φ dom G C = C
50 49 fveq2d φ R1 dom G C = R1 C
51 50 mpteq1d φ y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = y R1 C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
52 49 adantr φ y R1 C dom G C = C
53 52 unieqd φ y R1 C dom G C = C
54 52 53 eqeq12d φ y R1 C dom G C = dom G C C = C
55 54 ifbid φ y R1 C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = if C = C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
56 rankr1ai y R1 C rank y C
57 56 ad2antlr φ y R1 C C = C rank y C
58 simpr φ y R1 C C = C C = C
59 57 58 eleqtrd φ y R1 C C = C rank y C
60 eloni C On Ord C
61 ordsucuniel Ord C rank y C suc rank y C
62 4 60 61 3syl φ rank y C suc rank y C
63 62 ad2antrr φ y R1 C C = C rank y C suc rank y C
64 59 63 mpbid φ y R1 C C = C suc rank y C
65 64 fvresd φ y R1 C C = C G C suc rank y = G suc rank y
66 65 fveq1d φ y R1 C C = C G C suc rank y y = G suc rank y y
67 66 oveq2d φ y R1 C C = C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y = suc ran G C 𝑜 rank y + 𝑜 G suc rank y y
68 67 ifeq1da φ y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y
69 53 adantr φ y R1 C ¬ C = C dom G C = C
70 69 fveq2d φ y R1 C ¬ C = C G C dom G C = G C C
71 4 ad2antrr φ y R1 C ¬ C = C C On
72 uniexg C On C V
73 sucidg C V C suc C
74 71 72 73 3syl φ y R1 C ¬ C = C C suc C
75 4 adantr φ y R1 C C On
76 orduniorsuc Ord C C = C C = suc C
77 75 60 76 3syl φ y R1 C C = C C = suc C
78 77 orcanai φ y R1 C ¬ C = C C = suc C
79 74 78 eleqtrrd φ y R1 C ¬ C = C C C
80 79 fvresd φ y R1 C ¬ C = C G C C = G C
81 70 80 eqtrd φ y R1 C ¬ C = C G C dom G C = G C
82 81 rneqd φ y R1 C ¬ C = C ran G C dom G C = ran G C
83 oieq2 ran G C dom G C = ran G C OrdIso E ran G C dom G C = OrdIso E ran G C
84 82 83 syl φ y R1 C ¬ C = C OrdIso E ran G C dom G C = OrdIso E ran G C
85 84 cnveqd φ y R1 C ¬ C = C OrdIso E ran G C dom G C -1 = OrdIso E ran G C -1
86 85 81 coeq12d φ y R1 C ¬ C = C OrdIso E ran G C dom G C -1 G C dom G C = OrdIso E ran G C -1 G C
87 86 5 eqtr4di φ y R1 C ¬ C = C OrdIso E ran G C dom G C -1 G C dom G C = H
88 87 imaeq1d φ y R1 C ¬ C = C OrdIso E ran G C dom G C -1 G C dom G C y = H y
89 88 fveq2d φ y R1 C ¬ C = C F OrdIso E ran G C dom G C -1 G C dom G C y = F H y
90 89 ifeq2da φ y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y
91 55 68 90 3eqtrd φ y R1 C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y
92 91 mpteq2dva φ y R1 C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y
93 51 92 eqtrd φ y R1 dom G C if dom G C = dom G C suc ran G C 𝑜 rank y + 𝑜 G C suc rank y y F OrdIso E ran G C dom G C -1 G C dom G C y = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y
94 7 44 93 3eqtrd φ G C = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y