Metamath Proof Explorer


Theorem dfac12lem2

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 φ A On
dfac12.3 φ F : 𝒫 har R1 A 1-1 On
dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
dfac12.5 φ C On
dfac12.h H = OrdIso E ran G C -1 G C
dfac12.6 φ C A
dfac12.8 φ z C G z : R1 z 1-1 On
Assertion dfac12lem2 φ G C : R1 C 1-1 On

Proof

Step Hyp Ref Expression
1 dfac12.1 φ A On
2 dfac12.3 φ F : 𝒫 har R1 A 1-1 On
3 dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
4 dfac12.5 φ C On
5 dfac12.h H = OrdIso E ran G C -1 G C
6 dfac12.6 φ C A
7 dfac12.8 φ z C G z : R1 z 1-1 On
8 3 tfr1 G Fn On
9 fnfun G Fn On Fun G
10 8 9 ax-mp Fun G
11 funimaexg Fun G C On G C V
12 10 4 11 sylancr φ G C V
13 uniexg G C V G C V
14 rnexg G C V ran G C V
15 12 13 14 3syl φ ran G C V
16 f1f G z : R1 z 1-1 On G z : R1 z On
17 fssxp G z : R1 z On G z R1 z × On
18 ssv R1 z V
19 xpss1 R1 z V R1 z × On V × On
20 18 19 ax-mp R1 z × On V × On
21 sstr G z R1 z × On R1 z × On V × On G z V × On
22 20 21 mpan2 G z R1 z × On G z V × On
23 fvex G z V
24 23 elpw G z 𝒫 V × On G z V × On
25 22 24 sylibr G z R1 z × On G z 𝒫 V × On
26 16 17 25 3syl G z : R1 z 1-1 On G z 𝒫 V × On
27 26 ralimi z C G z : R1 z 1-1 On z C G z 𝒫 V × On
28 7 27 syl φ z C G z 𝒫 V × On
29 onss C On C On
30 4 29 syl φ C On
31 8 fndmi dom G = On
32 30 31 sseqtrrdi φ C dom G
33 funimass4 Fun G C dom G G C 𝒫 V × On z C G z 𝒫 V × On
34 10 32 33 sylancr φ G C 𝒫 V × On z C G z 𝒫 V × On
35 28 34 mpbird φ G C 𝒫 V × On
36 sspwuni G C 𝒫 V × On G C V × On
37 35 36 sylib φ G C V × On
38 rnss G C V × On ran G C ran V × On
39 37 38 syl φ ran G C ran V × On
40 rnxpss ran V × On On
41 39 40 sstrdi φ ran G C On
42 ssonuni ran G C V ran G C On ran G C On
43 15 41 42 sylc φ ran G C On
44 suceloni ran G C On suc ran G C On
45 43 44 syl φ suc ran G C On
46 45 ad2antrr φ y R1 C C = C suc ran G C On
47 rankon rank y On
48 omcl suc ran G C On rank y On suc ran G C 𝑜 rank y On
49 46 47 48 sylancl φ y R1 C C = C suc ran G C 𝑜 rank y On
50 fveq2 z = suc rank y G z = G suc rank y
51 f1eq1 G z = G suc rank y G z : R1 z 1-1 On G suc rank y : R1 z 1-1 On
52 50 51 syl z = suc rank y G z : R1 z 1-1 On G suc rank y : R1 z 1-1 On
53 fveq2 z = suc rank y R1 z = R1 suc rank y
54 f1eq2 R1 z = R1 suc rank y G suc rank y : R1 z 1-1 On G suc rank y : R1 suc rank y 1-1 On
55 53 54 syl z = suc rank y G suc rank y : R1 z 1-1 On G suc rank y : R1 suc rank y 1-1 On
56 52 55 bitrd z = suc rank y G z : R1 z 1-1 On G suc rank y : R1 suc rank y 1-1 On
57 7 ad2antrr φ y R1 C C = C z C G z : R1 z 1-1 On
58 rankr1ai y R1 C rank y C
59 58 ad2antlr φ y R1 C C = C rank y C
60 simpr φ y R1 C C = C C = C
61 59 60 eleqtrd φ y R1 C C = C rank y C
62 eloni C On Ord C
63 4 62 syl φ Ord C
64 63 ad2antrr φ y R1 C C = C Ord C
65 ordsucuniel Ord C rank y C suc rank y C
66 64 65 syl φ y R1 C C = C rank y C suc rank y C
67 61 66 mpbid φ y R1 C C = C suc rank y C
68 56 57 67 rspcdva φ y R1 C C = C G suc rank y : R1 suc rank y 1-1 On
69 f1f G suc rank y : R1 suc rank y 1-1 On G suc rank y : R1 suc rank y On
70 68 69 syl φ y R1 C C = C G suc rank y : R1 suc rank y On
71 r1elwf y R1 C y R1 On
72 71 ad2antlr φ y R1 C C = C y R1 On
73 rankidb y R1 On y R1 suc rank y
74 72 73 syl φ y R1 C C = C y R1 suc rank y
75 70 74 ffvelrnd φ y R1 C C = C G suc rank y y On
76 oacl suc ran G C 𝑜 rank y On G suc rank y y On suc ran G C 𝑜 rank y + 𝑜 G suc rank y y On
77 49 75 76 syl2anc φ y R1 C C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y On
78 f1f F : 𝒫 har R1 A 1-1 On F : 𝒫 har R1 A On
79 2 78 syl φ F : 𝒫 har R1 A On
80 79 ad2antrr φ y R1 C ¬ C = C F : 𝒫 har R1 A On
81 imassrn H y ran H
82 fvex G C V
83 82 rnex ran G C V
84 fveq2 z = C G z = G C
85 f1eq1 G z = G C G z : R1 z 1-1 On G C : R1 z 1-1 On
86 84 85 syl z = C G z : R1 z 1-1 On G C : R1 z 1-1 On
87 fveq2 z = C R1 z = R1 C
88 f1eq2 R1 z = R1 C G C : R1 z 1-1 On G C : R1 C 1-1 On
89 87 88 syl z = C G C : R1 z 1-1 On G C : R1 C 1-1 On
90 86 89 bitrd z = C G z : R1 z 1-1 On G C : R1 C 1-1 On
91 7 ad2antrr φ y R1 C ¬ C = C z C G z : R1 z 1-1 On
92 4 ad2antrr φ y R1 C ¬ C = C C On
93 onuni C On C On
94 sucidg C On C suc C
95 92 93 94 3syl φ y R1 C ¬ C = C C suc C
96 63 adantr φ y R1 C Ord C
97 orduniorsuc Ord C C = C C = suc C
98 96 97 syl φ y R1 C C = C C = suc C
99 98 orcanai φ y R1 C ¬ C = C C = suc C
100 95 99 eleqtrrd φ y R1 C ¬ C = C C C
101 90 91 100 rspcdva φ y R1 C ¬ C = C G C : R1 C 1-1 On
102 f1f G C : R1 C 1-1 On G C : R1 C On
103 frn G C : R1 C On ran G C On
104 101 102 103 3syl φ y R1 C ¬ C = C ran G C On
105 epweon E We On
106 wess ran G C On E We On E We ran G C
107 104 105 106 mpisyl φ y R1 C ¬ C = C E We ran G C
108 eqid OrdIso E ran G C = OrdIso E ran G C
109 108 oiiso ran G C V E We ran G C OrdIso E ran G C Isom E , E dom OrdIso E ran G C ran G C
110 83 107 109 sylancr φ y R1 C ¬ C = C OrdIso E ran G C Isom E , E dom OrdIso E ran G C ran G C
111 isof1o OrdIso E ran G C Isom E , E dom OrdIso E ran G C ran G C OrdIso E ran G C : dom OrdIso E ran G C 1-1 onto ran G C
112 f1ocnv OrdIso E ran G C : dom OrdIso E ran G C 1-1 onto ran G C OrdIso E ran G C -1 : ran G C 1-1 onto dom OrdIso E ran G C
113 f1of1 OrdIso E ran G C -1 : ran G C 1-1 onto dom OrdIso E ran G C OrdIso E ran G C -1 : ran G C 1-1 dom OrdIso E ran G C
114 110 111 112 113 4syl φ y R1 C ¬ C = C OrdIso E ran G C -1 : ran G C 1-1 dom OrdIso E ran G C
115 f1f1orn G C : R1 C 1-1 On G C : R1 C 1-1 onto ran G C
116 f1of1 G C : R1 C 1-1 onto ran G C G C : R1 C 1-1 ran G C
117 101 115 116 3syl φ y R1 C ¬ C = C G C : R1 C 1-1 ran G C
118 f1co OrdIso E ran G C -1 : ran G C 1-1 dom OrdIso E ran G C G C : R1 C 1-1 ran G C OrdIso E ran G C -1 G C : R1 C 1-1 dom OrdIso E ran G C
119 114 117 118 syl2anc φ y R1 C ¬ C = C OrdIso E ran G C -1 G C : R1 C 1-1 dom OrdIso E ran G C
120 f1eq1 H = OrdIso E ran G C -1 G C H : R1 C 1-1 dom OrdIso E ran G C OrdIso E ran G C -1 G C : R1 C 1-1 dom OrdIso E ran G C
121 5 120 ax-mp H : R1 C 1-1 dom OrdIso E ran G C OrdIso E ran G C -1 G C : R1 C 1-1 dom OrdIso E ran G C
122 119 121 sylibr φ y R1 C ¬ C = C H : R1 C 1-1 dom OrdIso E ran G C
123 f1f H : R1 C 1-1 dom OrdIso E ran G C H : R1 C dom OrdIso E ran G C
124 frn H : R1 C dom OrdIso E ran G C ran H dom OrdIso E ran G C
125 122 123 124 3syl φ y R1 C ¬ C = C ran H dom OrdIso E ran G C
126 harcl har R1 A On
127 126 onordi Ord har R1 A
128 108 oion ran G C V dom OrdIso E ran G C On
129 83 128 mp1i φ y R1 C ¬ C = C dom OrdIso E ran G C On
130 108 oien ran G C V E We ran G C dom OrdIso E ran G C ran G C
131 83 107 130 sylancr φ y R1 C ¬ C = C dom OrdIso E ran G C ran G C
132 fvex R1 C V
133 132 f1oen G C : R1 C 1-1 onto ran G C R1 C ran G C
134 ensym R1 C ran G C ran G C R1 C
135 101 115 133 134 4syl φ y R1 C ¬ C = C ran G C R1 C
136 fvex R1 A V
137 1 ad2antrr φ y R1 C ¬ C = C A On
138 6 ad2antrr φ y R1 C ¬ C = C C A
139 138 100 sseldd φ y R1 C ¬ C = C C A
140 r1ord2 A On C A R1 C R1 A
141 137 139 140 sylc φ y R1 C ¬ C = C R1 C R1 A
142 ssdomg R1 A V R1 C R1 A R1 C R1 A
143 136 141 142 mpsyl φ y R1 C ¬ C = C R1 C R1 A
144 endomtr ran G C R1 C R1 C R1 A ran G C R1 A
145 135 143 144 syl2anc φ y R1 C ¬ C = C ran G C R1 A
146 endomtr dom OrdIso E ran G C ran G C ran G C R1 A dom OrdIso E ran G C R1 A
147 131 145 146 syl2anc φ y R1 C ¬ C = C dom OrdIso E ran G C R1 A
148 elharval dom OrdIso E ran G C har R1 A dom OrdIso E ran G C On dom OrdIso E ran G C R1 A
149 129 147 148 sylanbrc φ y R1 C ¬ C = C dom OrdIso E ran G C har R1 A
150 ordelss Ord har R1 A dom OrdIso E ran G C har R1 A dom OrdIso E ran G C har R1 A
151 127 149 150 sylancr φ y R1 C ¬ C = C dom OrdIso E ran G C har R1 A
152 125 151 sstrd φ y R1 C ¬ C = C ran H har R1 A
153 81 152 sstrid φ y R1 C ¬ C = C H y har R1 A
154 fvex har R1 A V
155 154 elpw2 H y 𝒫 har R1 A H y har R1 A
156 153 155 sylibr φ y R1 C ¬ C = C H y 𝒫 har R1 A
157 80 156 ffvelrnd φ y R1 C ¬ C = C F H y On
158 77 157 ifclda φ y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y On
159 158 ex φ y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y On
160 iftrue C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = suc ran G C 𝑜 rank y + 𝑜 G suc rank y y
161 iftrue C = C if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z = suc ran G C 𝑜 rank z + 𝑜 G suc rank z z
162 160 161 eqeq12d C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z suc ran G C 𝑜 rank y + 𝑜 G suc rank y y = suc ran G C 𝑜 rank z + 𝑜 G suc rank z z
163 162 adantl φ y R1 C z R1 C C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z suc ran G C 𝑜 rank y + 𝑜 G suc rank y y = suc ran G C 𝑜 rank z + 𝑜 G suc rank z z
164 45 ad2antrr φ y R1 C z R1 C C = C suc ran G C On
165 nsuceq0 suc ran G C
166 165 a1i φ y R1 C z R1 C C = C suc ran G C
167 47 a1i φ y R1 C z R1 C C = C rank y On
168 onsucuni ran G C On ran G C suc ran G C
169 41 168 syl φ ran G C suc ran G C
170 169 ad2antrr φ y R1 C C = C ran G C suc ran G C
171 30 ad2antrr φ y R1 C C = C C On
172 fnfvima G Fn On C On suc rank y C G suc rank y G C
173 8 171 67 172 mp3an2i φ y R1 C C = C G suc rank y G C
174 elssuni G suc rank y G C G suc rank y G C
175 rnss G suc rank y G C ran G suc rank y ran G C
176 173 174 175 3syl φ y R1 C C = C ran G suc rank y ran G C
177 f1fn G suc rank y : R1 suc rank y 1-1 On G suc rank y Fn R1 suc rank y
178 68 177 syl φ y R1 C C = C G suc rank y Fn R1 suc rank y
179 fnfvelrn G suc rank y Fn R1 suc rank y y R1 suc rank y G suc rank y y ran G suc rank y
180 178 74 179 syl2anc φ y R1 C C = C G suc rank y y ran G suc rank y
181 176 180 sseldd φ y R1 C C = C G suc rank y y ran G C
182 170 181 sseldd φ y R1 C C = C G suc rank y y suc ran G C
183 182 adantlrr φ y R1 C z R1 C C = C G suc rank y y suc ran G C
184 rankon rank z On
185 184 a1i φ y R1 C z R1 C C = C rank z On
186 eleq1w y = z y R1 C z R1 C
187 186 anbi2d y = z φ y R1 C φ z R1 C
188 187 anbi1d y = z φ y R1 C C = C φ z R1 C C = C
189 fveq2 y = z rank y = rank z
190 suceq rank y = rank z suc rank y = suc rank z
191 189 190 syl y = z suc rank y = suc rank z
192 191 fveq2d y = z G suc rank y = G suc rank z
193 id y = z y = z
194 192 193 fveq12d y = z G suc rank y y = G suc rank z z
195 194 eleq1d y = z G suc rank y y suc ran G C G suc rank z z suc ran G C
196 188 195 imbi12d y = z φ y R1 C C = C G suc rank y y suc ran G C φ z R1 C C = C G suc rank z z suc ran G C
197 196 182 chvarvv φ z R1 C C = C G suc rank z z suc ran G C
198 197 adantlrl φ y R1 C z R1 C C = C G suc rank z z suc ran G C
199 omopth2 suc ran G C On suc ran G C rank y On G suc rank y y suc ran G C rank z On G suc rank z z suc ran G C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y = suc ran G C 𝑜 rank z + 𝑜 G suc rank z z rank y = rank z G suc rank y y = G suc rank z z
200 164 166 167 183 185 198 199 syl222anc φ y R1 C z R1 C C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y = suc ran G C 𝑜 rank z + 𝑜 G suc rank z z rank y = rank z G suc rank y y = G suc rank z z
201 190 adantl φ y R1 C z R1 C C = C rank y = rank z suc rank y = suc rank z
202 201 fveq2d φ y R1 C z R1 C C = C rank y = rank z G suc rank y = G suc rank z
203 202 fveq1d φ y R1 C z R1 C C = C rank y = rank z G suc rank y z = G suc rank z z
204 203 eqeq2d φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank y z G suc rank y y = G suc rank z z
205 68 adantlrr φ y R1 C z R1 C C = C G suc rank y : R1 suc rank y 1-1 On
206 205 adantr φ y R1 C z R1 C C = C rank y = rank z G suc rank y : R1 suc rank y 1-1 On
207 74 adantlrr φ y R1 C z R1 C C = C y R1 suc rank y
208 207 adantr φ y R1 C z R1 C C = C rank y = rank z y R1 suc rank y
209 r1elwf z R1 C z R1 On
210 rankidb z R1 On z R1 suc rank z
211 209 210 syl z R1 C z R1 suc rank z
212 211 ad2antll φ y R1 C z R1 C z R1 suc rank z
213 212 ad2antrr φ y R1 C z R1 C C = C rank y = rank z z R1 suc rank z
214 201 fveq2d φ y R1 C z R1 C C = C rank y = rank z R1 suc rank y = R1 suc rank z
215 213 214 eleqtrrd φ y R1 C z R1 C C = C rank y = rank z z R1 suc rank y
216 f1fveq G suc rank y : R1 suc rank y 1-1 On y R1 suc rank y z R1 suc rank y G suc rank y y = G suc rank y z y = z
217 206 208 215 216 syl12anc φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank y z y = z
218 204 217 bitr3d φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank z z y = z
219 218 biimpd φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank z z y = z
220 219 expimpd φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank z z y = z
221 189 194 jca y = z rank y = rank z G suc rank y y = G suc rank z z
222 220 221 impbid1 φ y R1 C z R1 C C = C rank y = rank z G suc rank y y = G suc rank z z y = z
223 163 200 222 3bitrd φ y R1 C z R1 C C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z y = z
224 iffalse ¬ C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = F H y
225 iffalse ¬ C = C if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z = F H z
226 224 225 eqeq12d ¬ C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z F H y = F H z
227 226 adantl φ y R1 C z R1 C ¬ C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z F H y = F H z
228 2 ad2antrr φ y R1 C z R1 C ¬ C = C F : 𝒫 har R1 A 1-1 On
229 156 adantlrr φ y R1 C z R1 C ¬ C = C H y 𝒫 har R1 A
230 187 anbi1d y = z φ y R1 C ¬ C = C φ z R1 C ¬ C = C
231 imaeq2 y = z H y = H z
232 231 eleq1d y = z H y 𝒫 har R1 A H z 𝒫 har R1 A
233 230 232 imbi12d y = z φ y R1 C ¬ C = C H y 𝒫 har R1 A φ z R1 C ¬ C = C H z 𝒫 har R1 A
234 233 156 chvarvv φ z R1 C ¬ C = C H z 𝒫 har R1 A
235 234 adantlrl φ y R1 C z R1 C ¬ C = C H z 𝒫 har R1 A
236 f1fveq F : 𝒫 har R1 A 1-1 On H y 𝒫 har R1 A H z 𝒫 har R1 A F H y = F H z H y = H z
237 228 229 235 236 syl12anc φ y R1 C z R1 C ¬ C = C F H y = F H z H y = H z
238 122 adantlrr φ y R1 C z R1 C ¬ C = C H : R1 C 1-1 dom OrdIso E ran G C
239 simplrl φ y R1 C z R1 C ¬ C = C y R1 C
240 99 fveq2d φ y R1 C ¬ C = C R1 C = R1 suc C
241 r1suc C On R1 suc C = 𝒫 R1 C
242 92 93 241 3syl φ y R1 C ¬ C = C R1 suc C = 𝒫 R1 C
243 240 242 eqtrd φ y R1 C ¬ C = C R1 C = 𝒫 R1 C
244 243 adantlrr φ y R1 C z R1 C ¬ C = C R1 C = 𝒫 R1 C
245 239 244 eleqtrd φ y R1 C z R1 C ¬ C = C y 𝒫 R1 C
246 245 elpwid φ y R1 C z R1 C ¬ C = C y R1 C
247 simplrr φ y R1 C z R1 C ¬ C = C z R1 C
248 247 244 eleqtrd φ y R1 C z R1 C ¬ C = C z 𝒫 R1 C
249 248 elpwid φ y R1 C z R1 C ¬ C = C z R1 C
250 f1imaeq H : R1 C 1-1 dom OrdIso E ran G C y R1 C z R1 C H y = H z y = z
251 238 246 249 250 syl12anc φ y R1 C z R1 C ¬ C = C H y = H z y = z
252 227 237 251 3bitrd φ y R1 C z R1 C ¬ C = C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z y = z
253 223 252 pm2.61dan φ y R1 C z R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z y = z
254 253 ex φ y R1 C z R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y = if C = C suc ran G C 𝑜 rank z + 𝑜 G suc rank z z F H z y = z
255 159 254 dom2lem φ y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y : R1 C 1-1 On
256 1 2 3 4 5 dfac12lem1 φ G C = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y
257 f1eq1 G C = y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y G C : R1 C 1-1 On y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y : R1 C 1-1 On
258 256 257 syl φ G C : R1 C 1-1 On y R1 C if C = C suc ran G C 𝑜 rank y + 𝑜 G suc rank y y F H y : R1 C 1-1 On
259 255 258 mpbird φ G C : R1 C 1-1 On