Metamath Proof Explorer


Theorem dfac12lem3

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 φ A On
dfac12.3 φ F : 𝒫 har R1 A 1-1 On
dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
Assertion dfac12lem3 φ R1 A dom card

Proof

Step Hyp Ref Expression
1 dfac12.1 φ A On
2 dfac12.3 φ F : 𝒫 har R1 A 1-1 On
3 dfac12.4 G = recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y F OrdIso E ran x dom x -1 x dom x y
4 fvex G A V
5 4 rnex ran G A V
6 ssid A A
7 sseq1 m = n m A n A
8 fveq2 m = n G m = G n
9 f1eq1 G m = G n G m : R1 m 1-1 On G n : R1 m 1-1 On
10 8 9 syl m = n G m : R1 m 1-1 On G n : R1 m 1-1 On
11 fveq2 m = n R1 m = R1 n
12 f1eq2 R1 m = R1 n G n : R1 m 1-1 On G n : R1 n 1-1 On
13 11 12 syl m = n G n : R1 m 1-1 On G n : R1 n 1-1 On
14 10 13 bitrd m = n G m : R1 m 1-1 On G n : R1 n 1-1 On
15 7 14 imbi12d m = n m A G m : R1 m 1-1 On n A G n : R1 n 1-1 On
16 15 imbi2d m = n φ m A G m : R1 m 1-1 On φ n A G n : R1 n 1-1 On
17 sseq1 m = A m A A A
18 fveq2 m = A G m = G A
19 f1eq1 G m = G A G m : R1 m 1-1 On G A : R1 m 1-1 On
20 18 19 syl m = A G m : R1 m 1-1 On G A : R1 m 1-1 On
21 fveq2 m = A R1 m = R1 A
22 f1eq2 R1 m = R1 A G A : R1 m 1-1 On G A : R1 A 1-1 On
23 21 22 syl m = A G A : R1 m 1-1 On G A : R1 A 1-1 On
24 20 23 bitrd m = A G m : R1 m 1-1 On G A : R1 A 1-1 On
25 17 24 imbi12d m = A m A G m : R1 m 1-1 On A A G A : R1 A 1-1 On
26 25 imbi2d m = A φ m A G m : R1 m 1-1 On φ A A G A : R1 A 1-1 On
27 r19.21v n m φ n A G n : R1 n 1-1 On φ n m n A G n : R1 n 1-1 On
28 eloni m On Ord m
29 28 ad2antrl φ m On m A Ord m
30 ordelss Ord m n m n m
31 29 30 sylan φ m On m A n m n m
32 simplrr φ m On m A n m m A
33 31 32 sstrd φ m On m A n m n A
34 pm5.5 n A n A G n : R1 n 1-1 On G n : R1 n 1-1 On
35 33 34 syl φ m On m A n m n A G n : R1 n 1-1 On G n : R1 n 1-1 On
36 35 ralbidva φ m On m A n m n A G n : R1 n 1-1 On n m G n : R1 n 1-1 On
37 1 ad2antrr φ m On m A n m G n : R1 n 1-1 On A On
38 2 ad2antrr φ m On m A n m G n : R1 n 1-1 On F : 𝒫 har R1 A 1-1 On
39 simplrl φ m On m A n m G n : R1 n 1-1 On m On
40 eqid OrdIso E ran G m -1 G m = OrdIso E ran G m -1 G m
41 simplrr φ m On m A n m G n : R1 n 1-1 On m A
42 simpr φ m On m A n m G n : R1 n 1-1 On n m G n : R1 n 1-1 On
43 fveq2 n = z G n = G z
44 f1eq1 G n = G z G n : R1 n 1-1 On G z : R1 n 1-1 On
45 43 44 syl n = z G n : R1 n 1-1 On G z : R1 n 1-1 On
46 fveq2 n = z R1 n = R1 z
47 f1eq2 R1 n = R1 z G z : R1 n 1-1 On G z : R1 z 1-1 On
48 46 47 syl n = z G z : R1 n 1-1 On G z : R1 z 1-1 On
49 45 48 bitrd n = z G n : R1 n 1-1 On G z : R1 z 1-1 On
50 49 cbvralvw n m G n : R1 n 1-1 On z m G z : R1 z 1-1 On
51 42 50 sylib φ m On m A n m G n : R1 n 1-1 On z m G z : R1 z 1-1 On
52 37 38 3 39 40 41 51 dfac12lem2 φ m On m A n m G n : R1 n 1-1 On G m : R1 m 1-1 On
53 52 ex φ m On m A n m G n : R1 n 1-1 On G m : R1 m 1-1 On
54 36 53 sylbid φ m On m A n m n A G n : R1 n 1-1 On G m : R1 m 1-1 On
55 54 expr φ m On m A n m n A G n : R1 n 1-1 On G m : R1 m 1-1 On
56 55 com23 φ m On n m n A G n : R1 n 1-1 On m A G m : R1 m 1-1 On
57 56 expcom m On φ n m n A G n : R1 n 1-1 On m A G m : R1 m 1-1 On
58 57 a2d m On φ n m n A G n : R1 n 1-1 On φ m A G m : R1 m 1-1 On
59 27 58 syl5bi m On n m φ n A G n : R1 n 1-1 On φ m A G m : R1 m 1-1 On
60 16 26 59 tfis3 A On φ A A G A : R1 A 1-1 On
61 1 60 mpcom φ A A G A : R1 A 1-1 On
62 6 61 mpi φ G A : R1 A 1-1 On
63 f1f G A : R1 A 1-1 On G A : R1 A On
64 frn G A : R1 A On ran G A On
65 62 63 64 3syl φ ran G A On
66 onssnum ran G A V ran G A On ran G A dom card
67 5 65 66 sylancr φ ran G A dom card
68 f1f1orn G A : R1 A 1-1 On G A : R1 A 1-1 onto ran G A
69 62 68 syl φ G A : R1 A 1-1 onto ran G A
70 fvex R1 A V
71 70 f1oen G A : R1 A 1-1 onto ran G A R1 A ran G A
72 ennum R1 A ran G A R1 A dom card ran G A dom card
73 69 71 72 3syl φ R1 A dom card ran G A dom card
74 67 73 mpbird φ R1 A dom card