Metamath Proof Explorer


Theorem dfac12lem3

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 φAOn
dfac12.3 φF:𝒫harR1A1-1On
dfac12.4 G=recsxVyR1domxifdomx=domxsucranranx𝑜ranky+𝑜xsucrankyyFOrdIsoEranxdomx-1xdomxy
Assertion dfac12lem3 φR1Adomcard

Proof

Step Hyp Ref Expression
1 dfac12.1 φAOn
2 dfac12.3 φF:𝒫harR1A1-1On
3 dfac12.4 G=recsxVyR1domxifdomx=domxsucranranx𝑜ranky+𝑜xsucrankyyFOrdIsoEranxdomx-1xdomxy
4 fvex GAV
5 4 rnex ranGAV
6 ssid AA
7 sseq1 m=nmAnA
8 fveq2 m=nGm=Gn
9 f1eq1 Gm=GnGm:R1m1-1OnGn:R1m1-1On
10 8 9 syl m=nGm:R1m1-1OnGn:R1m1-1On
11 fveq2 m=nR1m=R1n
12 f1eq2 R1m=R1nGn:R1m1-1OnGn:R1n1-1On
13 11 12 syl m=nGn:R1m1-1OnGn:R1n1-1On
14 10 13 bitrd m=nGm:R1m1-1OnGn:R1n1-1On
15 7 14 imbi12d m=nmAGm:R1m1-1OnnAGn:R1n1-1On
16 15 imbi2d m=nφmAGm:R1m1-1OnφnAGn:R1n1-1On
17 sseq1 m=AmAAA
18 fveq2 m=AGm=GA
19 f1eq1 Gm=GAGm:R1m1-1OnGA:R1m1-1On
20 18 19 syl m=AGm:R1m1-1OnGA:R1m1-1On
21 fveq2 m=AR1m=R1A
22 f1eq2 R1m=R1AGA:R1m1-1OnGA:R1A1-1On
23 21 22 syl m=AGA:R1m1-1OnGA:R1A1-1On
24 20 23 bitrd m=AGm:R1m1-1OnGA:R1A1-1On
25 17 24 imbi12d m=AmAGm:R1m1-1OnAAGA:R1A1-1On
26 25 imbi2d m=AφmAGm:R1m1-1OnφAAGA:R1A1-1On
27 r19.21v nmφnAGn:R1n1-1OnφnmnAGn:R1n1-1On
28 eloni mOnOrdm
29 28 ad2antrl φmOnmAOrdm
30 ordelss Ordmnmnm
31 29 30 sylan φmOnmAnmnm
32 simplrr φmOnmAnmmA
33 31 32 sstrd φmOnmAnmnA
34 pm5.5 nAnAGn:R1n1-1OnGn:R1n1-1On
35 33 34 syl φmOnmAnmnAGn:R1n1-1OnGn:R1n1-1On
36 35 ralbidva φmOnmAnmnAGn:R1n1-1OnnmGn:R1n1-1On
37 1 ad2antrr φmOnmAnmGn:R1n1-1OnAOn
38 2 ad2antrr φmOnmAnmGn:R1n1-1OnF:𝒫harR1A1-1On
39 simplrl φmOnmAnmGn:R1n1-1OnmOn
40 eqid OrdIsoEranGm-1Gm=OrdIsoEranGm-1Gm
41 simplrr φmOnmAnmGn:R1n1-1OnmA
42 simpr φmOnmAnmGn:R1n1-1OnnmGn:R1n1-1On
43 fveq2 n=zGn=Gz
44 f1eq1 Gn=GzGn:R1n1-1OnGz:R1n1-1On
45 43 44 syl n=zGn:R1n1-1OnGz:R1n1-1On
46 fveq2 n=zR1n=R1z
47 f1eq2 R1n=R1zGz:R1n1-1OnGz:R1z1-1On
48 46 47 syl n=zGz:R1n1-1OnGz:R1z1-1On
49 45 48 bitrd n=zGn:R1n1-1OnGz:R1z1-1On
50 49 cbvralvw nmGn:R1n1-1OnzmGz:R1z1-1On
51 42 50 sylib φmOnmAnmGn:R1n1-1OnzmGz:R1z1-1On
52 37 38 3 39 40 41 51 dfac12lem2 φmOnmAnmGn:R1n1-1OnGm:R1m1-1On
53 52 ex φmOnmAnmGn:R1n1-1OnGm:R1m1-1On
54 36 53 sylbid φmOnmAnmnAGn:R1n1-1OnGm:R1m1-1On
55 54 expr φmOnmAnmnAGn:R1n1-1OnGm:R1m1-1On
56 55 com23 φmOnnmnAGn:R1n1-1OnmAGm:R1m1-1On
57 56 expcom mOnφnmnAGn:R1n1-1OnmAGm:R1m1-1On
58 57 a2d mOnφnmnAGn:R1n1-1OnφmAGm:R1m1-1On
59 27 58 biimtrid mOnnmφnAGn:R1n1-1OnφmAGm:R1m1-1On
60 16 26 59 tfis3 AOnφAAGA:R1A1-1On
61 1 60 mpcom φAAGA:R1A1-1On
62 6 61 mpi φGA:R1A1-1On
63 f1f GA:R1A1-1OnGA:R1AOn
64 frn GA:R1AOnranGAOn
65 62 63 64 3syl φranGAOn
66 onssnum ranGAVranGAOnranGAdomcard
67 5 65 66 sylancr φranGAdomcard
68 f1f1orn GA:R1A1-1OnGA:R1A1-1 ontoranGA
69 62 68 syl φGA:R1A1-1 ontoranGA
70 fvex R1AV
71 70 f1oen GA:R1A1-1 ontoranGAR1AranGA
72 ennum R1AranGAR1AdomcardranGAdomcard
73 69 71 72 3syl φR1AdomcardranGAdomcard
74 67 73 mpbird φR1Adomcard