Metamath Proof Explorer


Theorem dfac12r

Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion dfac12r x On 𝒫 x dom card R1 On dom card

Proof

Step Hyp Ref Expression
1 rankwflemb y R1 On z On y R1 suc z
2 harcl har R1 z On
3 pweq x = har R1 z 𝒫 x = 𝒫 har R1 z
4 3 eleq1d x = har R1 z 𝒫 x dom card 𝒫 har R1 z dom card
5 4 rspcv har R1 z On x On 𝒫 x dom card 𝒫 har R1 z dom card
6 2 5 ax-mp x On 𝒫 x dom card 𝒫 har R1 z dom card
7 cardid2 𝒫 har R1 z dom card card 𝒫 har R1 z 𝒫 har R1 z
8 ensym card 𝒫 har R1 z 𝒫 har R1 z 𝒫 har R1 z card 𝒫 har R1 z
9 bren 𝒫 har R1 z card 𝒫 har R1 z f f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z
10 simpr f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On z On
11 f1of1 f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z f : 𝒫 har R1 z 1-1 card 𝒫 har R1 z
12 11 adantr f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On f : 𝒫 har R1 z 1-1 card 𝒫 har R1 z
13 cardon card 𝒫 har R1 z On
14 13 onssi card 𝒫 har R1 z On
15 f1ss f : 𝒫 har R1 z 1-1 card 𝒫 har R1 z card 𝒫 har R1 z On f : 𝒫 har R1 z 1-1 On
16 12 14 15 sylancl f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On f : 𝒫 har R1 z 1-1 On
17 fveq2 y = b rank y = rank b
18 17 oveq2d y = b suc ran ran x 𝑜 rank y = suc ran ran x 𝑜 rank b
19 suceq rank y = rank b suc rank y = suc rank b
20 17 19 syl y = b suc rank y = suc rank b
21 20 fveq2d y = b x suc rank y = x suc rank b
22 id y = b y = b
23 21 22 fveq12d y = b x suc rank y y = x suc rank b b
24 18 23 oveq12d y = b suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y = suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b
25 imaeq2 y = b OrdIso E ran x dom x -1 x dom x y = OrdIso E ran x dom x -1 x dom x b
26 25 fveq2d y = b f OrdIso E ran x dom x -1 x dom x y = f OrdIso E ran x dom x -1 x dom x b
27 24 26 ifeq12d y = b if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = if dom x = dom x suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b f OrdIso E ran x dom x -1 x dom x b
28 27 cbvmptv y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = b R1 dom x if dom x = dom x suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b f OrdIso E ran x dom x -1 x dom x b
29 dmeq x = a dom x = dom a
30 29 fveq2d x = a R1 dom x = R1 dom a
31 29 unieqd x = a dom x = dom a
32 29 31 eqeq12d x = a dom x = dom x dom a = dom a
33 rneq x = a ran x = ran a
34 33 unieqd x = a ran x = ran a
35 34 rneqd x = a ran ran x = ran ran a
36 35 unieqd x = a ran ran x = ran ran a
37 suceq ran ran x = ran ran a suc ran ran x = suc ran ran a
38 36 37 syl x = a suc ran ran x = suc ran ran a
39 38 oveq1d x = a suc ran ran x 𝑜 rank b = suc ran ran a 𝑜 rank b
40 fveq1 x = a x suc rank b = a suc rank b
41 40 fveq1d x = a x suc rank b b = a suc rank b b
42 39 41 oveq12d x = a suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b = suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b
43 id x = a x = a
44 43 31 fveq12d x = a x dom x = a dom a
45 44 rneqd x = a ran x dom x = ran a dom a
46 oieq2 ran x dom x = ran a dom a OrdIso E ran x dom x = OrdIso E ran a dom a
47 45 46 syl x = a OrdIso E ran x dom x = OrdIso E ran a dom a
48 47 cnveqd x = a OrdIso E ran x dom x -1 = OrdIso E ran a dom a -1
49 48 44 coeq12d x = a OrdIso E ran x dom x -1 x dom x = OrdIso E ran a dom a -1 a dom a
50 49 imaeq1d x = a OrdIso E ran x dom x -1 x dom x b = OrdIso E ran a dom a -1 a dom a b
51 50 fveq2d x = a f OrdIso E ran x dom x -1 x dom x b = f OrdIso E ran a dom a -1 a dom a b
52 32 42 51 ifbieq12d x = a if dom x = dom x suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b f OrdIso E ran x dom x -1 x dom x b = if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
53 30 52 mpteq12dv x = a b R1 dom x if dom x = dom x suc ran ran x 𝑜 rank b + 𝑜 x suc rank b b f OrdIso E ran x dom x -1 x dom x b = b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
54 28 53 eqtrid x = a y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
55 54 cbvmptv x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = a V b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
56 recseq x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = a V b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = recs a V b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
57 55 56 ax-mp recs x V y R1 dom x if dom x = dom x suc ran ran x 𝑜 rank y + 𝑜 x suc rank y y f OrdIso E ran x dom x -1 x dom x y = recs a V b R1 dom a if dom a = dom a suc ran ran a 𝑜 rank b + 𝑜 a suc rank b b f OrdIso E ran a dom a -1 a dom a b
58 10 16 57 dfac12lem3 f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On R1 z dom card
59 58 ex f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On R1 z dom card
60 59 exlimiv f f : 𝒫 har R1 z 1-1 onto card 𝒫 har R1 z z On R1 z dom card
61 9 60 sylbi 𝒫 har R1 z card 𝒫 har R1 z z On R1 z dom card
62 6 7 8 61 4syl x On 𝒫 x dom card z On R1 z dom card
63 62 imp x On 𝒫 x dom card z On R1 z dom card
64 r1suc z On R1 suc z = 𝒫 R1 z
65 64 adantl x On 𝒫 x dom card z On R1 suc z = 𝒫 R1 z
66 65 eleq2d x On 𝒫 x dom card z On y R1 suc z y 𝒫 R1 z
67 elpwi y 𝒫 R1 z y R1 z
68 66 67 syl6bi x On 𝒫 x dom card z On y R1 suc z y R1 z
69 ssnum R1 z dom card y R1 z y dom card
70 63 68 69 syl6an x On 𝒫 x dom card z On y R1 suc z y dom card
71 70 rexlimdva x On 𝒫 x dom card z On y R1 suc z y dom card
72 1 71 syl5bi x On 𝒫 x dom card y R1 On y dom card
73 72 ssrdv x On 𝒫 x dom card R1 On dom card
74 onwf On R1 On
75 74 sseli x On x R1 On
76 pwwf x R1 On 𝒫 x R1 On
77 75 76 sylib x On 𝒫 x R1 On
78 ssel R1 On dom card 𝒫 x R1 On 𝒫 x dom card
79 77 78 syl5 R1 On dom card x On 𝒫 x dom card
80 79 ralrimiv R1 On dom card x On 𝒫 x dom card
81 73 80 impbii x On 𝒫 x dom card R1 On dom card