Step |
Hyp |
Ref |
Expression |
1 |
|
rankwflemb |
|
2 |
|
harcl |
|
3 |
|
pweq |
|
4 |
3
|
eleq1d |
|
5 |
4
|
rspcv |
|
6 |
2 5
|
ax-mp |
|
7 |
|
cardid2 |
|
8 |
|
ensym |
|
9 |
|
bren |
|
10 |
|
simpr |
|
11 |
|
f1of1 |
|
12 |
11
|
adantr |
|
13 |
|
cardon |
|
14 |
13
|
onssi |
|
15 |
|
f1ss |
|
16 |
12 14 15
|
sylancl |
|
17 |
|
fveq2 |
|
18 |
17
|
oveq2d |
|
19 |
|
suceq |
|
20 |
17 19
|
syl |
|
21 |
20
|
fveq2d |
|
22 |
|
id |
|
23 |
21 22
|
fveq12d |
|
24 |
18 23
|
oveq12d |
|
25 |
|
imaeq2 |
|
26 |
25
|
fveq2d |
|
27 |
24 26
|
ifeq12d |
|
28 |
27
|
cbvmptv |
|
29 |
|
dmeq |
|
30 |
29
|
fveq2d |
|
31 |
29
|
unieqd |
|
32 |
29 31
|
eqeq12d |
|
33 |
|
rneq |
|
34 |
33
|
unieqd |
|
35 |
34
|
rneqd |
|
36 |
35
|
unieqd |
|
37 |
|
suceq |
|
38 |
36 37
|
syl |
|
39 |
38
|
oveq1d |
|
40 |
|
fveq1 |
|
41 |
40
|
fveq1d |
|
42 |
39 41
|
oveq12d |
|
43 |
|
id |
|
44 |
43 31
|
fveq12d |
|
45 |
44
|
rneqd |
|
46 |
|
oieq2 |
|
47 |
45 46
|
syl |
|
48 |
47
|
cnveqd |
|
49 |
48 44
|
coeq12d |
|
50 |
49
|
imaeq1d |
|
51 |
50
|
fveq2d |
|
52 |
32 42 51
|
ifbieq12d |
|
53 |
30 52
|
mpteq12dv |
|
54 |
28 53
|
eqtrid |
|
55 |
54
|
cbvmptv |
|
56 |
|
recseq |
|
57 |
55 56
|
ax-mp |
|
58 |
10 16 57
|
dfac12lem3 |
|
59 |
58
|
ex |
|
60 |
59
|
exlimiv |
|
61 |
9 60
|
sylbi |
|
62 |
6 7 8 61
|
4syl |
|
63 |
62
|
imp |
|
64 |
|
r1suc |
|
65 |
64
|
adantl |
|
66 |
65
|
eleq2d |
|
67 |
|
elpwi |
|
68 |
66 67
|
syl6bi |
|
69 |
|
ssnum |
|
70 |
63 68 69
|
syl6an |
|
71 |
70
|
rexlimdva |
|
72 |
1 71
|
syl5bi |
|
73 |
72
|
ssrdv |
|
74 |
|
onwf |
|
75 |
74
|
sseli |
|
76 |
|
pwwf |
|
77 |
75 76
|
sylib |
|
78 |
|
ssel |
|
79 |
77 78
|
syl5 |
|
80 |
79
|
ralrimiv |
|
81 |
73 80
|
impbii |
|