Metamath Proof Explorer


Theorem dfac13

Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion dfac13 CHOICE x x AC _ x

Proof

Step Hyp Ref Expression
1 vex x V
2 acacni CHOICE x V AC _ x = V
3 2 elvd CHOICE AC _ x = V
4 1 3 eleqtrrid CHOICE x AC _ x
5 4 alrimiv CHOICE x x AC _ x
6 vpwex 𝒫 z V
7 id x = 𝒫 z x = 𝒫 z
8 acneq x = 𝒫 z AC _ x = AC _ 𝒫 z
9 7 8 eleq12d x = 𝒫 z x AC _ x 𝒫 z AC _ 𝒫 z
10 6 9 spcv x x AC _ x 𝒫 z AC _ 𝒫 z
11 vex y V
12 vex z V
13 12 canth2 z 𝒫 z
14 sdomdom z 𝒫 z z 𝒫 z
15 acndom2 z 𝒫 z 𝒫 z AC _ 𝒫 z z AC _ 𝒫 z
16 13 14 15 mp2b 𝒫 z AC _ 𝒫 z z AC _ 𝒫 z
17 acnnum z AC _ 𝒫 z z dom card
18 16 17 sylib 𝒫 z AC _ 𝒫 z z dom card
19 numacn y V z dom card z AC _ y
20 11 18 19 mpsyl 𝒫 z AC _ 𝒫 z z AC _ y
21 10 20 syl x x AC _ x z AC _ y
22 12 a1i x x AC _ x z V
23 21 22 2thd x x AC _ x z AC _ y z V
24 23 eqrdv x x AC _ x AC _ y = V
25 24 alrimiv x x AC _ x y AC _ y = V
26 dfacacn CHOICE y AC _ y = V
27 25 26 sylibr x x AC _ x CHOICE
28 5 27 impbii CHOICE x x AC _ x