| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
1
|
unieqd |
|
| 3 |
2
|
pweqd |
|
| 4 |
3
|
cbvixpv |
|
| 5 |
4
|
eleq2i |
|
| 6 |
|
simplr |
|
| 7 |
6
|
feqmptd |
|
| 8 |
7
|
fveq2d |
|
| 9 |
8
|
fveq2d |
|
| 10 |
9
|
fveq1d |
|
| 11 |
|
eqid |
|
| 12 |
|
vex |
|
| 13 |
12
|
dmex |
|
| 14 |
13
|
a1i |
|
| 15 |
6
|
ffvelcdmda |
|
| 16 |
|
toptopon2 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
simpr |
|
| 19 |
18 5
|
sylibr |
|
| 20 |
|
vex |
|
| 21 |
20
|
elixp |
|
| 22 |
21
|
simprbi |
|
| 23 |
19 22
|
syl |
|
| 24 |
23
|
r19.21bi |
|
| 25 |
24
|
elpwid |
|
| 26 |
|
fvex |
|
| 27 |
13 26
|
iunex |
|
| 28 |
|
simpll |
|
| 29 |
|
acacni |
|
| 30 |
28 13 29
|
sylancl |
|
| 31 |
27 30
|
eleqtrrid |
|
| 32 |
11 14 17 25 31
|
ptclsg |
|
| 33 |
10 32
|
eqtrd |
|
| 34 |
5 33
|
sylan2b |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
alrimiv |
|
| 38 |
|
vex |
|
| 39 |
38
|
dmex |
|
| 40 |
39
|
a1i |
|
| 41 |
|
fvex |
|
| 42 |
41
|
a1i |
|
| 43 |
|
simplrr |
|
| 44 |
|
df-nel |
|
| 45 |
43 44
|
sylib |
|
| 46 |
|
funforn |
|
| 47 |
|
fof |
|
| 48 |
46 47
|
sylbi |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
49
|
ffvelcdmda |
|
| 51 |
|
eleq1 |
|
| 52 |
50 51
|
syl5ibcom |
|
| 53 |
52
|
necon3bd |
|
| 54 |
45 53
|
mpd |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
|
fveq1 |
|
| 59 |
58
|
ixpeq2dv |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
cbvixpv |
|
| 62 |
59 61
|
eqtrdi |
|
| 63 |
62
|
fveq2d |
|
| 64 |
58
|
fveq2d |
|
| 65 |
64
|
ixpeq2dv |
|
| 66 |
60
|
unieqd |
|
| 67 |
66
|
pweqd |
|
| 68 |
67
|
sneqd |
|
| 69 |
60 68
|
uneq12d |
|
| 70 |
69
|
pweqd |
|
| 71 |
67
|
eleq1d |
|
| 72 |
69
|
eqeq2d |
|
| 73 |
71 72
|
imbi12d |
|
| 74 |
70 73
|
rabeqbidv |
|
| 75 |
74
|
fveq2d |
|
| 76 |
75 60
|
fveq12d |
|
| 77 |
76
|
cbvixpv |
|
| 78 |
65 77
|
eqtrdi |
|
| 79 |
63 78
|
eqeq12d |
|
| 80 |
|
simpl |
|
| 81 |
|
snex |
|
| 82 |
41 81
|
unex |
|
| 83 |
|
ssun2 |
|
| 84 |
41
|
uniex |
|
| 85 |
84
|
pwex |
|
| 86 |
85
|
snid |
|
| 87 |
83 86
|
sselii |
|
| 88 |
|
epttop |
|
| 89 |
82 87 88
|
mp2an |
|
| 90 |
89
|
topontopi |
|
| 91 |
90
|
a1i |
|
| 92 |
91
|
fmpttd |
|
| 93 |
39
|
mptex |
|
| 94 |
|
id |
|
| 95 |
|
dmeq |
|
| 96 |
82
|
pwex |
|
| 97 |
96
|
rabex |
|
| 98 |
|
eqid |
|
| 99 |
97 98
|
dmmpti |
|
| 100 |
95 99
|
eqtrdi |
|
| 101 |
94 100
|
feq12d |
|
| 102 |
100
|
ixpeq1d |
|
| 103 |
|
fveq1 |
|
| 104 |
|
fveq2 |
|
| 105 |
104
|
unieqd |
|
| 106 |
105
|
pweqd |
|
| 107 |
106
|
sneqd |
|
| 108 |
104 107
|
uneq12d |
|
| 109 |
108
|
pweqd |
|
| 110 |
106
|
eleq1d |
|
| 111 |
108
|
eqeq2d |
|
| 112 |
110 111
|
imbi12d |
|
| 113 |
109 112
|
rabeqbidv |
|
| 114 |
|
fvex |
|
| 115 |
|
snex |
|
| 116 |
114 115
|
unex |
|
| 117 |
116
|
pwex |
|
| 118 |
117
|
rabex |
|
| 119 |
113 98 118
|
fvmpt |
|
| 120 |
103 119
|
sylan9eq |
|
| 121 |
120
|
unieqd |
|
| 122 |
|
ssun2 |
|
| 123 |
114
|
uniex |
|
| 124 |
123
|
pwex |
|
| 125 |
124
|
snid |
|
| 126 |
122 125
|
sselii |
|
| 127 |
|
epttop |
|
| 128 |
116 126 127
|
mp2an |
|
| 129 |
128
|
toponunii |
|
| 130 |
121 129
|
eqtr4di |
|
| 131 |
130
|
pweqd |
|
| 132 |
131
|
ixpeq2dva |
|
| 133 |
102 132
|
eqtrd |
|
| 134 |
|
2fveq3 |
|
| 135 |
100
|
ixpeq1d |
|
| 136 |
134 135
|
fveq12d |
|
| 137 |
100
|
ixpeq1d |
|
| 138 |
120
|
fveq2d |
|
| 139 |
138
|
fveq1d |
|
| 140 |
139
|
ixpeq2dva |
|
| 141 |
137 140
|
eqtrd |
|
| 142 |
136 141
|
eqeq12d |
|
| 143 |
133 142
|
raleqbidv |
|
| 144 |
101 143
|
imbi12d |
|
| 145 |
93 144
|
spcv |
|
| 146 |
80 92 145
|
sylc |
|
| 147 |
|
simprl |
|
| 148 |
147
|
funfnd |
|
| 149 |
|
ssun1 |
|
| 150 |
114
|
elpw |
|
| 151 |
149 150
|
mpbir |
|
| 152 |
151
|
rgenw |
|
| 153 |
38
|
elixp |
|
| 154 |
148 152 153
|
sylanblrc |
|
| 155 |
79 146 154
|
rspcdva |
|
| 156 |
40 42 54 55 56 57 155
|
dfac14lem |
|
| 157 |
156
|
ex |
|
| 158 |
157
|
alrimiv |
|
| 159 |
|
dfac9 |
|
| 160 |
158 159
|
sylibr |
|
| 161 |
37 160
|
impbii |
|