Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
1
|
unieqd |
|
3 |
2
|
pweqd |
|
4 |
3
|
cbvixpv |
|
5 |
4
|
eleq2i |
|
6 |
|
simplr |
|
7 |
6
|
feqmptd |
|
8 |
7
|
fveq2d |
|
9 |
8
|
fveq2d |
|
10 |
9
|
fveq1d |
|
11 |
|
eqid |
|
12 |
|
vex |
|
13 |
12
|
dmex |
|
14 |
13
|
a1i |
|
15 |
6
|
ffvelrnda |
|
16 |
|
toptopon2 |
|
17 |
15 16
|
sylib |
|
18 |
|
simpr |
|
19 |
18 5
|
sylibr |
|
20 |
|
vex |
|
21 |
20
|
elixp |
|
22 |
21
|
simprbi |
|
23 |
19 22
|
syl |
|
24 |
23
|
r19.21bi |
|
25 |
24
|
elpwid |
|
26 |
|
fvex |
|
27 |
13 26
|
iunex |
|
28 |
|
simpll |
|
29 |
|
acacni |
|
30 |
28 13 29
|
sylancl |
|
31 |
27 30
|
eleqtrrid |
|
32 |
11 14 17 25 31
|
ptclsg |
|
33 |
10 32
|
eqtrd |
|
34 |
5 33
|
sylan2b |
|
35 |
34
|
ralrimiva |
|
36 |
35
|
ex |
|
37 |
36
|
alrimiv |
|
38 |
|
vex |
|
39 |
38
|
dmex |
|
40 |
39
|
a1i |
|
41 |
|
fvex |
|
42 |
41
|
a1i |
|
43 |
|
simplrr |
|
44 |
|
df-nel |
|
45 |
43 44
|
sylib |
|
46 |
|
funforn |
|
47 |
|
fof |
|
48 |
46 47
|
sylbi |
|
49 |
48
|
ad2antrl |
|
50 |
49
|
ffvelrnda |
|
51 |
|
eleq1 |
|
52 |
50 51
|
syl5ibcom |
|
53 |
52
|
necon3bd |
|
54 |
45 53
|
mpd |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
|
fveq1 |
|
59 |
58
|
ixpeq2dv |
|
60 |
|
fveq2 |
|
61 |
60
|
cbvixpv |
|
62 |
59 61
|
eqtrdi |
|
63 |
62
|
fveq2d |
|
64 |
58
|
fveq2d |
|
65 |
64
|
ixpeq2dv |
|
66 |
60
|
unieqd |
|
67 |
66
|
pweqd |
|
68 |
67
|
sneqd |
|
69 |
60 68
|
uneq12d |
|
70 |
69
|
pweqd |
|
71 |
67
|
eleq1d |
|
72 |
69
|
eqeq2d |
|
73 |
71 72
|
imbi12d |
|
74 |
70 73
|
rabeqbidv |
|
75 |
74
|
fveq2d |
|
76 |
75 60
|
fveq12d |
|
77 |
76
|
cbvixpv |
|
78 |
65 77
|
eqtrdi |
|
79 |
63 78
|
eqeq12d |
|
80 |
|
simpl |
|
81 |
|
snex |
|
82 |
41 81
|
unex |
|
83 |
|
ssun2 |
|
84 |
41
|
uniex |
|
85 |
84
|
pwex |
|
86 |
85
|
snid |
|
87 |
83 86
|
sselii |
|
88 |
|
epttop |
|
89 |
82 87 88
|
mp2an |
|
90 |
89
|
topontopi |
|
91 |
90
|
a1i |
|
92 |
91
|
fmpttd |
|
93 |
39
|
mptex |
|
94 |
|
id |
|
95 |
|
dmeq |
|
96 |
82
|
pwex |
|
97 |
96
|
rabex |
|
98 |
|
eqid |
|
99 |
97 98
|
dmmpti |
|
100 |
95 99
|
eqtrdi |
|
101 |
94 100
|
feq12d |
|
102 |
100
|
ixpeq1d |
|
103 |
|
fveq1 |
|
104 |
|
fveq2 |
|
105 |
104
|
unieqd |
|
106 |
105
|
pweqd |
|
107 |
106
|
sneqd |
|
108 |
104 107
|
uneq12d |
|
109 |
108
|
pweqd |
|
110 |
106
|
eleq1d |
|
111 |
108
|
eqeq2d |
|
112 |
110 111
|
imbi12d |
|
113 |
109 112
|
rabeqbidv |
|
114 |
|
fvex |
|
115 |
|
snex |
|
116 |
114 115
|
unex |
|
117 |
116
|
pwex |
|
118 |
117
|
rabex |
|
119 |
113 98 118
|
fvmpt |
|
120 |
103 119
|
sylan9eq |
|
121 |
120
|
unieqd |
|
122 |
|
ssun2 |
|
123 |
114
|
uniex |
|
124 |
123
|
pwex |
|
125 |
124
|
snid |
|
126 |
122 125
|
sselii |
|
127 |
|
epttop |
|
128 |
116 126 127
|
mp2an |
|
129 |
128
|
toponunii |
|
130 |
121 129
|
eqtr4di |
|
131 |
130
|
pweqd |
|
132 |
131
|
ixpeq2dva |
|
133 |
102 132
|
eqtrd |
|
134 |
|
2fveq3 |
|
135 |
100
|
ixpeq1d |
|
136 |
134 135
|
fveq12d |
|
137 |
100
|
ixpeq1d |
|
138 |
120
|
fveq2d |
|
139 |
138
|
fveq1d |
|
140 |
139
|
ixpeq2dva |
|
141 |
137 140
|
eqtrd |
|
142 |
136 141
|
eqeq12d |
|
143 |
133 142
|
raleqbidv |
|
144 |
101 143
|
imbi12d |
|
145 |
93 144
|
spcv |
|
146 |
80 92 145
|
sylc |
|
147 |
|
simprl |
|
148 |
147
|
funfnd |
|
149 |
|
ssun1 |
|
150 |
114
|
elpw |
|
151 |
149 150
|
mpbir |
|
152 |
151
|
rgenw |
|
153 |
38
|
elixp |
|
154 |
148 152 153
|
sylanblrc |
|
155 |
79 146 154
|
rspcdva |
|
156 |
40 42 54 55 56 57 155
|
dfac14lem |
|
157 |
156
|
ex |
|
158 |
157
|
alrimiv |
|
159 |
|
dfac9 |
|
160 |
158 159
|
sylibr |
|
161 |
37 160
|
impbii |
|