Metamath Proof Explorer


Theorem dfac14lem

Description: Lemma for dfac14 . By equipping S u. { P } for some P e/ S with the particular point topology, we can show that P is in the closure of S ; hence the sequence P ( x ) is in the product of the closures, and we can utilize this instance of ptcls to extract an element of the closure of X_ k e. I S . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses dfac14lem.i φ I V
dfac14lem.s φ x I S W
dfac14lem.0 φ x I S
dfac14lem.p P = 𝒫 S
dfac14lem.r R = y 𝒫 S P | P y y = S P
dfac14lem.j J = 𝑡 x I R
dfac14lem.c φ cls J x I S = x I cls R S
Assertion dfac14lem φ x I S

Proof

Step Hyp Ref Expression
1 dfac14lem.i φ I V
2 dfac14lem.s φ x I S W
3 dfac14lem.0 φ x I S
4 dfac14lem.p P = 𝒫 S
5 dfac14lem.r R = y 𝒫 S P | P y y = S P
6 dfac14lem.j J = 𝑡 x I R
7 dfac14lem.c φ cls J x I S = x I cls R S
8 eleq2w y = z P y P z
9 eqeq1 y = z y = S P z = S P
10 8 9 imbi12d y = z P y y = S P P z z = S P
11 10 5 elrab2 z R z 𝒫 S P P z z = S P
12 3 adantr φ x I z 𝒫 S P S
13 ineq1 z = S P z S = S P S
14 ssun1 S S P
15 sseqin2 S S P S P S = S
16 14 15 mpbi S P S = S
17 13 16 eqtrdi z = S P z S = S
18 17 neeq1d z = S P z S S
19 12 18 syl5ibrcom φ x I z 𝒫 S P z = S P z S
20 19 imim2d φ x I z 𝒫 S P P z z = S P P z z S
21 20 expimpd φ x I z 𝒫 S P P z z = S P P z z S
22 11 21 syl5bi φ x I z R P z z S
23 22 ralrimiv φ x I z R P z z S
24 snex P V
25 unexg S W P V S P V
26 2 24 25 sylancl φ x I S P V
27 ssun2 P S P
28 uniexg S W S V
29 pwexg S V 𝒫 S V
30 2 28 29 3syl φ x I 𝒫 S V
31 4 30 eqeltrid φ x I P V
32 snidg P V P P
33 31 32 syl φ x I P P
34 27 33 sseldi φ x I P S P
35 epttop S P V P S P y 𝒫 S P | P y y = S P TopOn S P
36 26 34 35 syl2anc φ x I y 𝒫 S P | P y y = S P TopOn S P
37 5 36 eqeltrid φ x I R TopOn S P
38 topontop R TopOn S P R Top
39 37 38 syl φ x I R Top
40 toponuni R TopOn S P S P = R
41 37 40 syl φ x I S P = R
42 14 41 sseqtrid φ x I S R
43 34 41 eleqtrd φ x I P R
44 eqid R = R
45 44 elcls R Top S R P R P cls R S z R P z z S
46 39 42 43 45 syl3anc φ x I P cls R S z R P z z S
47 23 46 mpbird φ x I P cls R S
48 47 ralrimiva φ x I P cls R S
49 mptelixpg I V x I P x I cls R S x I P cls R S
50 1 49 syl φ x I P x I cls R S x I P cls R S
51 48 50 mpbird φ x I P x I cls R S
52 51 ne0d φ x I cls R S
53 37 ralrimiva φ x I R TopOn S P
54 6 pttopon I V x I R TopOn S P J TopOn x I S P
55 1 53 54 syl2anc φ J TopOn x I S P
56 topontop J TopOn x I S P J Top
57 cls0 J Top cls J =
58 55 56 57 3syl φ cls J =
59 52 7 58 3netr4d φ cls J x I S cls J
60 fveq2 x I S = cls J x I S = cls J
61 60 necon3i cls J x I S cls J x I S
62 59 61 syl φ x I S