Step |
Hyp |
Ref |
Expression |
1 |
|
dfac14lem.i |
|
2 |
|
dfac14lem.s |
|
3 |
|
dfac14lem.0 |
|
4 |
|
dfac14lem.p |
|
5 |
|
dfac14lem.r |
|
6 |
|
dfac14lem.j |
|
7 |
|
dfac14lem.c |
|
8 |
|
eleq2w |
|
9 |
|
eqeq1 |
|
10 |
8 9
|
imbi12d |
|
11 |
10 5
|
elrab2 |
|
12 |
3
|
adantr |
|
13 |
|
ineq1 |
|
14 |
|
ssun1 |
|
15 |
|
sseqin2 |
|
16 |
14 15
|
mpbi |
|
17 |
13 16
|
eqtrdi |
|
18 |
17
|
neeq1d |
|
19 |
12 18
|
syl5ibrcom |
|
20 |
19
|
imim2d |
|
21 |
20
|
expimpd |
|
22 |
11 21
|
syl5bi |
|
23 |
22
|
ralrimiv |
|
24 |
|
snex |
|
25 |
|
unexg |
|
26 |
2 24 25
|
sylancl |
|
27 |
|
ssun2 |
|
28 |
|
uniexg |
|
29 |
|
pwexg |
|
30 |
2 28 29
|
3syl |
|
31 |
4 30
|
eqeltrid |
|
32 |
|
snidg |
|
33 |
31 32
|
syl |
|
34 |
27 33
|
sselid |
|
35 |
|
epttop |
|
36 |
26 34 35
|
syl2anc |
|
37 |
5 36
|
eqeltrid |
|
38 |
|
topontop |
|
39 |
37 38
|
syl |
|
40 |
|
toponuni |
|
41 |
37 40
|
syl |
|
42 |
14 41
|
sseqtrid |
|
43 |
34 41
|
eleqtrd |
|
44 |
|
eqid |
|
45 |
44
|
elcls |
|
46 |
39 42 43 45
|
syl3anc |
|
47 |
23 46
|
mpbird |
|
48 |
47
|
ralrimiva |
|
49 |
|
mptelixpg |
|
50 |
1 49
|
syl |
|
51 |
48 50
|
mpbird |
|
52 |
51
|
ne0d |
|
53 |
37
|
ralrimiva |
|
54 |
6
|
pttopon |
|
55 |
1 53 54
|
syl2anc |
|
56 |
|
topontop |
|
57 |
|
cls0 |
|
58 |
55 56 57
|
3syl |
|
59 |
52 7 58
|
3netr4d |
|
60 |
|
fveq2 |
|
61 |
60
|
necon3i |
|
62 |
59 61
|
syl |
|