| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac14lem.i |
|
| 2 |
|
dfac14lem.s |
|
| 3 |
|
dfac14lem.0 |
|
| 4 |
|
dfac14lem.p |
|
| 5 |
|
dfac14lem.r |
|
| 6 |
|
dfac14lem.j |
|
| 7 |
|
dfac14lem.c |
|
| 8 |
|
eleq2w |
|
| 9 |
|
eqeq1 |
|
| 10 |
8 9
|
imbi12d |
|
| 11 |
10 5
|
elrab2 |
|
| 12 |
3
|
adantr |
|
| 13 |
|
ineq1 |
|
| 14 |
|
ssun1 |
|
| 15 |
|
sseqin2 |
|
| 16 |
14 15
|
mpbi |
|
| 17 |
13 16
|
eqtrdi |
|
| 18 |
17
|
neeq1d |
|
| 19 |
12 18
|
syl5ibrcom |
|
| 20 |
19
|
imim2d |
|
| 21 |
20
|
expimpd |
|
| 22 |
11 21
|
biimtrid |
|
| 23 |
22
|
ralrimiv |
|
| 24 |
|
snex |
|
| 25 |
|
unexg |
|
| 26 |
2 24 25
|
sylancl |
|
| 27 |
|
ssun2 |
|
| 28 |
|
uniexg |
|
| 29 |
|
pwexg |
|
| 30 |
2 28 29
|
3syl |
|
| 31 |
4 30
|
eqeltrid |
|
| 32 |
|
snidg |
|
| 33 |
31 32
|
syl |
|
| 34 |
27 33
|
sselid |
|
| 35 |
|
epttop |
|
| 36 |
26 34 35
|
syl2anc |
|
| 37 |
5 36
|
eqeltrid |
|
| 38 |
|
topontop |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
toponuni |
|
| 41 |
37 40
|
syl |
|
| 42 |
14 41
|
sseqtrid |
|
| 43 |
34 41
|
eleqtrd |
|
| 44 |
|
eqid |
|
| 45 |
44
|
elcls |
|
| 46 |
39 42 43 45
|
syl3anc |
|
| 47 |
23 46
|
mpbird |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
mptelixpg |
|
| 50 |
1 49
|
syl |
|
| 51 |
48 50
|
mpbird |
|
| 52 |
51
|
ne0d |
|
| 53 |
37
|
ralrimiva |
|
| 54 |
6
|
pttopon |
|
| 55 |
1 53 54
|
syl2anc |
|
| 56 |
|
topontop |
|
| 57 |
|
cls0 |
|
| 58 |
55 56 57
|
3syl |
|
| 59 |
52 7 58
|
3netr4d |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
necon3i |
|
| 62 |
59 61
|
syl |
|