Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|
2 |
1
|
dmex |
|
3 |
2
|
a1i |
|
4 |
|
simpr |
|
5 |
|
fvex |
|
6 |
5
|
uniex |
|
7 |
|
acufl |
|
8 |
7
|
adantr |
|
9 |
6 8
|
eleqtrrid |
|
10 |
|
simpl |
|
11 |
|
dfac10 |
|
12 |
10 11
|
sylib |
|
13 |
6 12
|
eleqtrrid |
|
14 |
9 13
|
elind |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16
|
ptcmpg |
|
18 |
3 4 14 17
|
syl3anc |
|
19 |
18
|
ex |
|
20 |
19
|
alrimiv |
|
21 |
|
fvex |
|
22 |
|
kelac2lem |
|
23 |
21 22
|
mp1i |
|
24 |
23
|
fmpttd |
|
25 |
24
|
ffdmd |
|
26 |
|
vex |
|
27 |
26
|
dmex |
|
28 |
27
|
mptex |
|
29 |
|
id |
|
30 |
|
dmeq |
|
31 |
29 30
|
feq12d |
|
32 |
|
fveq2 |
|
33 |
32
|
eleq1d |
|
34 |
31 33
|
imbi12d |
|
35 |
28 34
|
spcv |
|
36 |
25 35
|
syl5com |
|
37 |
|
fvex |
|
38 |
37
|
a1i |
|
39 |
|
df-nel |
|
40 |
39
|
biimpi |
|
41 |
40
|
ad2antlr |
|
42 |
|
fvelrn |
|
43 |
42
|
adantlr |
|
44 |
|
eleq1 |
|
45 |
43 44
|
syl5ibcom |
|
46 |
45
|
necon3bd |
|
47 |
41 46
|
mpd |
|
48 |
47
|
adantlr |
|
49 |
|
fveq2 |
|
50 |
49
|
unieqd |
|
51 |
50
|
pweqd |
|
52 |
51
|
sneqd |
|
53 |
49 52
|
preq12d |
|
54 |
53
|
fveq2d |
|
55 |
54
|
cbvmptv |
|
56 |
55
|
fveq2i |
|
57 |
56
|
eleq1i |
|
58 |
57
|
biimpi |
|
59 |
58
|
adantl |
|
60 |
38 48 59
|
kelac2 |
|
61 |
60
|
ex |
|
62 |
36 61
|
syldc |
|
63 |
62
|
alrimiv |
|
64 |
|
dfac9 |
|
65 |
63 64
|
sylibr |
|
66 |
20 65
|
impbii |
|