Metamath Proof Explorer


Theorem dfac2a

Description: Our Axiom of Choice (in the form of ac3 ) implies the Axiom of Choice (first form) of Enderton p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion dfac2a x y z x z ∃! w z v y z v w v CHOICE

Proof

Step Hyp Ref Expression
1 riotauni ∃! w z v y z v w v ι w z | v y z v w v = w z | v y z v w v
2 riotacl ∃! w z v y z v w v ι w z | v y z v w v z
3 1 2 eqeltrrd ∃! w z v y z v w v w z | v y z v w v z
4 elequ2 u = z w u w z
5 elequ1 u = z u v z v
6 5 anbi1d u = z u v w v z v w v
7 6 rexbidv u = z v y u v w v v y z v w v
8 4 7 anbi12d u = z w u v y u v w v w z v y z v w v
9 8 rabbidva2 u = z w u | v y u v w v = w z | v y z v w v
10 9 unieqd u = z w u | v y u v w v = w z | v y z v w v
11 eqid u x w u | v y u v w v = u x w u | v y u v w v
12 vex z V
13 12 rabex w z | v y z v w v V
14 13 uniex w z | v y z v w v V
15 10 11 14 fvmpt z x u x w u | v y u v w v z = w z | v y z v w v
16 15 eleq1d z x u x w u | v y u v w v z z w z | v y z v w v z
17 3 16 syl5ibr z x ∃! w z v y z v w v u x w u | v y u v w v z z
18 17 imim2d z x z ∃! w z v y z v w v z u x w u | v y u v w v z z
19 18 ralimia z x z ∃! w z v y z v w v z x z u x w u | v y u v w v z z
20 ssrab2 w u | v y u v w v u
21 elssuni u x u x
22 20 21 sstrid u x w u | v y u v w v x
23 22 unissd u x w u | v y u v w v x
24 vex x V
25 24 uniex x V
26 25 uniex x V
27 26 elpw2 w u | v y u v w v 𝒫 x w u | v y u v w v x
28 23 27 sylibr u x w u | v y u v w v 𝒫 x
29 11 28 fmpti u x w u | v y u v w v : x 𝒫 x
30 26 pwex 𝒫 x V
31 fex2 u x w u | v y u v w v : x 𝒫 x x V 𝒫 x V u x w u | v y u v w v V
32 29 24 30 31 mp3an u x w u | v y u v w v V
33 fveq1 f = u x w u | v y u v w v f z = u x w u | v y u v w v z
34 33 eleq1d f = u x w u | v y u v w v f z z u x w u | v y u v w v z z
35 34 imbi2d f = u x w u | v y u v w v z f z z z u x w u | v y u v w v z z
36 35 ralbidv f = u x w u | v y u v w v z x z f z z z x z u x w u | v y u v w v z z
37 32 36 spcev z x z u x w u | v y u v w v z z f z x z f z z
38 19 37 syl z x z ∃! w z v y z v w v f z x z f z z
39 38 exlimiv y z x z ∃! w z v y z v w v f z x z f z z
40 39 alimi x y z x z ∃! w z v y z v w v x f z x z f z z
41 dfac3 CHOICE x f z x z f z z
42 40 41 sylibr x y z x z ∃! w z v y z v w v CHOICE