Metamath Proof Explorer


Theorem dfac5lem2

Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)

Ref Expression
Hypothesis dfac5lem.1 A = u | u t h u = t × t
Assertion dfac5lem2 w g A w h g w

Proof

Step Hyp Ref Expression
1 dfac5lem.1 A = u | u t h u = t × t
2 1 unieqi A = u | u t h u = t × t
3 2 eleq2i w g A w g u | u t h u = t × t
4 eluniab w g u | u t h u = t × t u w g u u t h u = t × t
5 r19.42v t h w g u u u = t × t w g u u t h u = t × t
6 anass w g u u t h u = t × t w g u u t h u = t × t
7 5 6 bitr2i w g u u t h u = t × t t h w g u u u = t × t
8 7 exbii u w g u u t h u = t × t u t h w g u u u = t × t
9 rexcom4 t h u w g u u u = t × t u t h w g u u u = t × t
10 df-rex t h u w g u u u = t × t t t h u w g u u u = t × t
11 9 10 bitr3i u t h w g u u u = t × t t t h u w g u u u = t × t
12 4 8 11 3bitri w g u | u t h u = t × t t t h u w g u u u = t × t
13 ancom w g u u u = t × t u = t × t w g u u
14 ne0i w g u u
15 14 pm4.71i w g u w g u u
16 15 anbi2i u = t × t w g u u = t × t w g u u
17 13 16 bitr4i w g u u u = t × t u = t × t w g u
18 17 exbii u w g u u u = t × t u u = t × t w g u
19 snex t V
20 vex t V
21 19 20 xpex t × t V
22 eleq2 u = t × t w g u w g t × t
23 21 22 ceqsexv u u = t × t w g u w g t × t
24 18 23 bitri u w g u u u = t × t w g t × t
25 24 anbi2i t h u w g u u u = t × t t h w g t × t
26 opelxp w g t × t w t g t
27 velsn w t w = t
28 equcom w = t t = w
29 27 28 bitri w t t = w
30 29 anbi1i w t g t t = w g t
31 26 30 bitri w g t × t t = w g t
32 31 anbi2i t h w g t × t t h t = w g t
33 an12 t h t = w g t t = w t h g t
34 25 32 33 3bitri t h u w g u u u = t × t t = w t h g t
35 34 exbii t t h u w g u u u = t × t t t = w t h g t
36 vex w V
37 elequ1 t = w t h w h
38 eleq2 t = w g t g w
39 37 38 anbi12d t = w t h g t w h g w
40 36 39 ceqsexv t t = w t h g t w h g w
41 35 40 bitri t t h u w g u u u = t × t w h g w
42 3 12 41 3bitri w g A w h g w