Metamath Proof Explorer


Theorem dfac5lem4

Description: Lemma for dfac5 . (Contributed by NM, 11-Apr-2004) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025)

Ref Expression
Hypotheses dfac5lem.1 A = u | u t h u = t × t
dfac5lem.2 φ x z x z z x w x z w z w = y z x ∃! v v z y
Assertion dfac5lem4 φ y z A ∃! v v z y

Proof

Step Hyp Ref Expression
1 dfac5lem.1 A = u | u t h u = t × t
2 dfac5lem.2 φ x z x z z x w x z w z w = y z x ∃! v v z y
3 vex z V
4 neeq1 u = z u z
5 eqeq1 u = z u = t × t z = t × t
6 5 rexbidv u = z t h u = t × t t h z = t × t
7 4 6 anbi12d u = z u t h u = t × t z t h z = t × t
8 3 7 elab z u | u t h u = t × t z t h z = t × t
9 8 simplbi z u | u t h u = t × t z
10 9 1 eleq2s z A z
11 10 rgen z A z
12 df-an x z x w ¬ x z ¬ x w
13 3 7 1 elab2 z A z t h z = t × t
14 13 simprbi z A t h z = t × t
15 vex w V
16 neeq1 u = w u w
17 eqeq1 u = w u = t × t w = t × t
18 17 rexbidv u = w t h u = t × t t h w = t × t
19 16 18 anbi12d u = w u t h u = t × t w t h w = t × t
20 15 19 1 elab2 w A w t h w = t × t
21 20 simprbi w A t h w = t × t
22 sneq t = g t = g
23 22 xpeq1d t = g t × t = g × t
24 xpeq2 t = g g × t = g × g
25 23 24 eqtrd t = g t × t = g × g
26 25 eqeq2d t = g w = t × t w = g × g
27 26 cbvrexvw t h w = t × t g h w = g × g
28 21 27 sylib w A g h w = g × g
29 eleq2 z = t × t x z x t × t
30 elxp x t × t u v x = u v u t v t
31 opeq1 u = s u v = s v
32 31 eqeq2d u = s x = u v x = s v
33 eleq1w u = s u t s t
34 33 anbi1d u = s u t v t s t v t
35 32 34 anbi12d u = s x = u v u t v t x = s v s t v t
36 35 excomimw u v x = u v u t v t v u x = u v u t v t
37 30 36 sylbi x t × t v u x = u v u t v t
38 29 37 biimtrdi z = t × t x z v u x = u v u t v t
39 eleq2 w = g × g x w x g × g
40 elxp x g × g u y x = u y u g y g
41 opeq1 u = s u y = s y
42 41 eqeq2d u = s x = u y x = s y
43 eleq1w u = s u g s g
44 43 anbi1d u = s u g y g s g y g
45 42 44 anbi12d u = s x = u y u g y g x = s y s g y g
46 45 excomimw u y x = u y u g y g y u x = u y u g y g
47 40 46 sylbi x g × g y u x = u y u g y g
48 39 47 biimtrdi w = g × g x w y u x = u y u g y g
49 38 48 im2anan9 z = t × t w = g × g x z x w v u x = u v u t v t y u x = u y u g y g
50 exdistrv v y u x = u v u t v t u x = u y u g y g v u x = u v u t v t y u x = u y u g y g
51 49 50 imbitrrdi z = t × t w = g × g x z x w v y u x = u v u t v t u x = u y u g y g
52 velsn u t u = t
53 opeq1 u = t u v = t v
54 53 eqeq2d u = t x = u v x = t v
55 54 biimpac x = u v u = t x = t v
56 52 55 sylan2b x = u v u t x = t v
57 56 adantrr x = u v u t v t x = t v
58 57 exlimiv u x = u v u t v t x = t v
59 velsn u g u = g
60 opeq1 u = g u y = g y
61 60 eqeq2d u = g x = u y x = g y
62 61 biimpac x = u y u = g x = g y
63 59 62 sylan2b x = u y u g x = g y
64 63 adantrr x = u y u g y g x = g y
65 64 exlimiv u x = u y u g y g x = g y
66 58 65 sylan9req u x = u v u t v t u x = u y u g y g t v = g y
67 vex t V
68 vex v V
69 67 68 opth1 t v = g y t = g
70 66 69 syl u x = u v u t v t u x = u y u g y g t = g
71 70 exlimivv v y u x = u v u t v t u x = u y u g y g t = g
72 51 71 syl6 z = t × t w = g × g x z x w t = g
73 72 25 syl6 z = t × t w = g × g x z x w t × t = g × g
74 eqeq12 z = t × t w = g × g z = w t × t = g × g
75 73 74 sylibrd z = t × t w = g × g x z x w z = w
76 75 ex z = t × t w = g × g x z x w z = w
77 76 rexlimivw t h z = t × t w = g × g x z x w z = w
78 77 rexlimdvw t h z = t × t g h w = g × g x z x w z = w
79 78 imp t h z = t × t g h w = g × g x z x w z = w
80 14 28 79 syl2an z A w A x z x w z = w
81 12 80 biimtrrid z A w A ¬ x z ¬ x w z = w
82 81 necon1ad z A w A z w x z ¬ x w
83 82 alrimdv z A w A z w x x z ¬ x w
84 disj1 z w = x x z ¬ x w
85 83 84 imbitrrdi z A w A z w z w =
86 85 rgen2 z A w A z w z w =
87 vex h V
88 vuniex h V
89 87 88 xpex h × h V
90 89 pwex 𝒫 h × h V
91 snssi t h t h
92 elssuni t h t h
93 xpss12 t h t h t × t h × h
94 91 92 93 syl2anc t h t × t h × h
95 vsnex t V
96 95 67 xpex t × t V
97 96 elpw t × t 𝒫 h × h t × t h × h
98 94 97 sylibr t h t × t 𝒫 h × h
99 eleq1 u = t × t u 𝒫 h × h t × t 𝒫 h × h
100 98 99 syl5ibrcom t h u = t × t u 𝒫 h × h
101 100 rexlimiv t h u = t × t u 𝒫 h × h
102 101 adantl u t h u = t × t u 𝒫 h × h
103 102 abssi u | u t h u = t × t 𝒫 h × h
104 90 103 ssexi u | u t h u = t × t V
105 1 104 eqeltri A V
106 raleq x = A z x z z A z
107 raleq x = A w x z w z w = w A z w z w =
108 107 raleqbi1dv x = A z x w x z w z w = z A w A z w z w =
109 106 108 anbi12d x = A z x z z x w x z w z w = z A z z A w A z w z w =
110 raleq x = A z x ∃! v v z y z A ∃! v v z y
111 110 exbidv x = A y z x ∃! v v z y y z A ∃! v v z y
112 109 111 imbi12d x = A z x z z x w x z w z w = y z x ∃! v v z y z A z z A w A z w z w = y z A ∃! v v z y
113 105 112 spcv x z x z z x w x z w z w = y z x ∃! v v z y z A z z A w A z w z w = y z A ∃! v v z y
114 2 113 sylbi φ z A z z A w A z w z w = y z A ∃! v v z y
115 11 86 114 mp2ani φ y z A ∃! v v z y