Metamath Proof Explorer


Theorem dfac8

Description: A proof of the equivalency of the well-ordering theorem weth and the axiom of choice ac7 . (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion dfac8 CHOICE x r r We x

Proof

Step Hyp Ref Expression
1 dfac3 CHOICE y f z y z f z z
2 vex x V
3 vpwex 𝒫 x V
4 raleq y = 𝒫 x z y z f z z z 𝒫 x z f z z
5 4 exbidv y = 𝒫 x f z y z f z z f z 𝒫 x z f z z
6 3 5 spcv y f z y z f z z f z 𝒫 x z f z z
7 dfac8a x V f z 𝒫 x z f z z x dom card
8 2 6 7 mpsyl y f z y z f z z x dom card
9 dfac8b x dom card r r We x
10 8 9 syl y f z y z f z z r r We x
11 10 alrimiv y f z y z f z z x r r We x
12 vex y V
13 vuniex y V
14 weeq2 x = y r We x r We y
15 14 exbidv x = y r r We x r r We y
16 13 15 spcv x r r We x r r We y
17 dfac8c y V r r We y f z y z f z z
18 12 16 17 mpsyl x r r We x f z y z f z z
19 18 alrimiv x r r We x y f z y z f z z
20 11 19 impbii y f z y z f z z x r r We x
21 1 20 bitri CHOICE x r r We x