Metamath Proof Explorer


Theorem dfac8b

Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dfac8b A dom card x x We A

Proof

Step Hyp Ref Expression
1 cardid2 A dom card card A A
2 bren card A A f f : card A 1-1 onto A
3 1 2 sylib A dom card f f : card A 1-1 onto A
4 sqxpexg A dom card A × A V
5 incom z w | f -1 z E f -1 w A × A = A × A z w | f -1 z E f -1 w
6 inex1g A × A V A × A z w | f -1 z E f -1 w V
7 5 6 eqeltrid A × A V z w | f -1 z E f -1 w A × A V
8 4 7 syl A dom card z w | f -1 z E f -1 w A × A V
9 f1ocnv f : card A 1-1 onto A f -1 : A 1-1 onto card A
10 cardon card A On
11 10 onordi Ord card A
12 ordwe Ord card A E We card A
13 11 12 ax-mp E We card A
14 eqid z w | f -1 z E f -1 w = z w | f -1 z E f -1 w
15 14 f1owe f -1 : A 1-1 onto card A E We card A z w | f -1 z E f -1 w We A
16 9 13 15 mpisyl f : card A 1-1 onto A z w | f -1 z E f -1 w We A
17 weinxp z w | f -1 z E f -1 w We A z w | f -1 z E f -1 w A × A We A
18 16 17 sylib f : card A 1-1 onto A z w | f -1 z E f -1 w A × A We A
19 weeq1 x = z w | f -1 z E f -1 w A × A x We A z w | f -1 z E f -1 w A × A We A
20 19 spcegv z w | f -1 z E f -1 w A × A V z w | f -1 z E f -1 w A × A We A x x We A
21 8 18 20 syl2im A dom card f : card A 1-1 onto A x x We A
22 21 exlimdv A dom card f f : card A 1-1 onto A x x We A
23 3 22 mpd A dom card x x We A